Assessment of Key Road Operator Actions to Support Automated Vehicles

16 June 2017

Austroads
Today’s moderator

Eliz Esteban
Communications Officer
Austroads

P: +61 2 8265 3302
E: eesteban@austroads.com.au
About Austroads

The peak organisation of Australasian road transport and traffic agencies

- Roads and Maritime Services New South Wales
- Roads Corporation Victoria
- Department of Transport and Main Roads Queensland
- Main Roads Western Australia
- Department of Planning, Transport and Infrastructure South Australia
- Department of State Growth Tasmania
- Department of Transport Northern Territory
- Transport Canberra and City Services Directorate, Australian Capital Territory
- Commonwealth Department of Infrastructure and Regional Development
- Australian Local Government Association
- New Zealand Transport Agency
Housekeeping

Presentations = 35 mins
Question time = 15 mins
Please type your questions here
Download from Austroads publication website:
Today’s presenters

Stuart Ballingall
Program Director, Connected & Automated Vehicles
Austroads
P: +61 3 9229 6095
E: stuart.ballingall@roads.vic.gov.au

Scott Benjamin
Technical Director, ITS
WSP Australia
P: +64 3 9861 1285
E: scott.benjamin@wsp.com
Overview of the Austroads Connected and Automated Vehicles (CAV) Program

Stuart Ballingall
Austroads CAV program

Austroads role and purpose:
• The peak organisation of Australasian road transport & traffic agencies
• Improve the safety, productivity & sustainability of Australasian road networks through research, collaboration & harmonisation

Austroads CAV program objectives:
• Support the local deployment & operation of CAVs
• Optimise the societal benefits of CAVs

Close collaboration with DIRD, NTC and jurisdictions
Collaborative national approach

Commonwealth:
• National policy, national regulator

National Transport Commission (NTC):
• Regulatory review and reform

Austroads:
• Operational framework for roads, registration & licencing (R&L)

Jurisdictions:
• Jurisdictional policy, regulation, road and R&L operations, trials
National guidelines for AV trials

• Developed by NTC & Austroads
• Endorsed by Ministers, published in May 2017
• Key objectives of the Guidelines:
 - Provide a performance-based framework
 - Provide clarity to industry
 - Support national consistency, cross border trials
 - Basis for jurisdictions to assess trial applications
 - Basis to determine exemption & permit conditions
Operational frameworks

Operational functions of Austroads road agency members:

• Vehicle registration
• Driver licensing
• Road infrastructure design & maintenance
• Road operations
Vehicle registration and driver licensing

Austroads published research report in March 2017

Scope of investigations included:

• **Vehicle registration**
• **Driver licensing**
• **Compulsory Third Party (CTP) insurance**

Key follow on projects:

• **Assessment of proposed safety assurance system**
Road design, maintenance and operations

Austroads published research report in May 2017

Scope of investigations included:

- Physical infrastructure
- Digital infrastructure
- Road and traffic operations

Key follow on projects:

- Concept of Operations for AV use cases
- Speed sign recognition assessment
Key issues were captured in three broad categories:

Physical infrastructure:
- Physical attributes
- Road pavement and structures
- Signs and lines
- Roadworks
- AV certification

Digital infrastructure:
- Cellular coverage
- Augmentation Systems for absolute positioning
- Digital mapping

Road operations:
- Network management approaches
- Update standards, guidelines, and regulations
- Roadworks
What it is, how do they behave, operator role in supporting?

Automated Vehicles (AVs) is a term used for vehicles that involve some automation of the primary driving controls (i.e. steering, acceleration, braking).

Partially automated vehicles can drive themselves but the driver is still responsible for monitoring and must be ready to take back control. Highly automated vehicles, in which an automated driving system can perform the entire dynamic driving task when the system is engaged.

AVs have the potential to change all aspects of mobility and many aspects of our communities. Examples of this include driver safety, insurance liability, and car ownership (potentially allied with on-demand mobility services).
Introduction to AV

What it is, how do they behave, operator role in supporting?

Selected AV manufacturers are seeking to employ some component of AI or machine learning into their AV systems to assist AVs with interpretation of the surrounding environment and improve driving safety performance.

Three key defining elements of AI:

1. Biomimicry
2. Swarm intelligence
3. Machine learning
Sensors

Source: Texas Instruments 2015
Localisation

Source: Bosch 2015
A common framework, describing the form and function of automated driving, will allow road operators to consider potential impacts, opportunities and implications of increasing automation.

This framework should be applicable to all project types: planning, design, operation, maintenance and use of AVs on the road network.

A three-part framework:
1. The vehicle (level of driving automation)
2. Interaction with the Road Environment
3. Strategic Management of Road Use
SAE Taxonomy

<table>
<thead>
<tr>
<th>Level</th>
<th>Name</th>
<th>Narrative definition</th>
<th>DDT</th>
<th>OEDR</th>
<th>CDT fallback</th>
<th>ODD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Driving Automation</td>
<td>The performance by the driver of the entire DDT, even when enhanced by active safety systems.</td>
<td>Driver</td>
<td>Driver</td>
<td>Driver</td>
<td>n/a</td>
</tr>
<tr>
<td>1</td>
<td>Driver Assistance</td>
<td>The sustained and ODD-specific execution by a driving automation system of either the lateral or the longitudinal vehicle motion control subtask of the DDT (but not both simultaneously) with the expectation that the driver performs the remainder of the DDT.</td>
<td>Driver and System</td>
<td>Driver</td>
<td>Driver</td>
<td>Limited</td>
</tr>
<tr>
<td>2</td>
<td>Partial Driving</td>
<td>The sustained and ODD-specific execution by a driving automation system of both the lateral and longitudinal vehicle motion control subtasks of the DDT with the expectation that the driver completes the OEDR subtask and supervises the driving automation system.</td>
<td>System</td>
<td>Driver</td>
<td>Driver</td>
<td>Limited</td>
</tr>
<tr>
<td>3</td>
<td>Conditional Driving</td>
<td>The sustained and ODD-specific performance by an ADS of the entire DDT with the expectation that the DDT fallback-ready user is receptive to ADS-initiated requests to intervene, as well as to DDT performance-relevant system failures in other vehicle systems, and will respond appropriately.</td>
<td>System</td>
<td>System</td>
<td>Fallback-ready user (becomes the driver during fallback)</td>
<td>Limited</td>
</tr>
<tr>
<td>4</td>
<td>High Driving Automation</td>
<td>The sustained and ODD-specific performance by an ADS of the entire DDT and DDT fallback without any expectation that a user will respond to a request to intervene.</td>
<td>System</td>
<td>System</td>
<td>System</td>
<td>Limited</td>
</tr>
<tr>
<td>5</td>
<td>Full Driving Automation</td>
<td>The sustained and unconditional (i.e., not ODD-specific) performance by an ADS of the entire DDT and DDT fallback without any expectation that a user will respond to a request to intervene.</td>
<td>System</td>
<td>System</td>
<td>System</td>
<td>Unlimited</td>
</tr>
</tbody>
</table>

Source: SAE International Standard J3016
Functional Safety

Source: AdaptIVe 2015
Movement and Place

Source: Austroads 2016a
Strategic View

STRATEGIC HIERARCHY OF VEHICLE OPERATION AND LAND USE INTERACTION

INTERACTION BETWEEN VEHICLE AND THE ENVIRONMENT

LEVEL OF DRIVER AUTOMATION SAE J3016

Movement and Place

Network Operating Plans
Timescales for Introduction

There are three major issues which will affect the widespread introduction of AV:

1. Availability of AV technology at an affordable price.
2. Appropriate legislation and regulation to ensure safe introduction and use of AV technologies.
3. Societal acceptance of the benefits of AVs and other changes to transportation and technology which could change the use of and turnover of the vehicle fleet.
Possible Timescales

Source: Developed by Austroads following a wide range of discussions with vehicle manufacturers and wider industry (2016)

<table>
<thead>
<tr>
<th>Timeline</th>
<th>2010+</th>
<th>2015+</th>
<th>2020+</th>
<th>2025+</th>
<th>2030+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 - Driver Assistance</td>
<td>< Park Steering Assist – low speed</td>
<td>< Adaptive Cruise Control (ACC) – high-mid speed</td>
<td>Lane Keep Assist (LKA) - active lane centring, high-mid speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 2 - Partial Automation</td>
<td>Low speed – Auto Parking Assist</td>
<td>High-to-mid speed - Highway Driving Assist (eg. ACC + LKA + AEB)</td>
<td>Mid-to-low speed - Traffic Jam Assist (eg. ACC + LKA + AEB + Stop&Go)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 - Conditional Automation</td>
<td>Low speed – Auto Valet Parking</td>
<td>High-mid speed, low-mid complex roads – Auto Hwy Chauffeur</td>
<td>Truck Platooning – only on specific roads</td>
<td>Hi-mid-low speed, highly complex urban & rural roads</td>
<td></td>
</tr>
<tr>
<td>Level 4 - High Automation</td>
<td>Low speed – Auto Parking Pilot</td>
<td>Low speed – Auto Parking Pilot</td>
<td>L4 on specific roads, but L3/L2/L1 on others</td>
<td>Driverless (always in auto pilot), but road access limited</td>
<td></td>
</tr>
<tr>
<td>Level 5 - Full Automation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Driverless, all roads</td>
</tr>
</tbody>
</table>
Guidance - Physical Infrastructure

Issue

Line marking and delineation
- Design - Consistency
- Asset management - Maintenance hierarchy and intervention levels, Removal of old line markings

Road signs (static)
- Design – Consistency, Minimum standards be applied, Difficult to interpret signs

Electronic signs, incl. Variable Message Signs (VMS)
- Design and asset management - Some cameras cannot clearly read some signs, Information from sign to the vehicle (I2V) is possible
- Asset management - Timeliness to install and confirm sign placement, Readability of signs, Positioning of signs

Traffic systems
- Design and asset management – Consistency, Consider for specific use cases

Structures pavements, bridges, tunnels and barriers to protect critical infrastructure
- Design and asset management - Change infrastructure
Guidance - Digital Infrastructure

<table>
<thead>
<tr>
<th>Issue</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset data</td>
<td>• Make key data available: Speed limit, Speed zone, road closure and lane availability, Clearways, New and changed roads</td>
</tr>
<tr>
<td>Road asset condition data</td>
<td>• Systems to support real time and historic</td>
</tr>
<tr>
<td>Privacy</td>
<td>• Relevant privacy and data surveillance legislation and guidelines</td>
</tr>
<tr>
<td>Data ownership</td>
<td>• Road operators will be an authoritative source of some information</td>
</tr>
<tr>
<td>Business models</td>
<td>• Consider opportunities and challenges</td>
</tr>
<tr>
<td>Cellular communication coverage</td>
<td>• Support coverage for all carriers</td>
</tr>
<tr>
<td>Other wireless communication</td>
<td>• Potential need for non-cellular V2I and I2V Communication</td>
</tr>
<tr>
<td>Positioning services</td>
<td>• Need for positioning services with high accuracy and integrity to support AV operation</td>
</tr>
</tbody>
</table>
Guidance - Road Operation

Issue

<table>
<thead>
<tr>
<th>Strategic framework for AV operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need for single point of reference for many use cases</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detailed guidance for AV operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Assessment for individual use cases</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detailed information about road works and closures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consider the implication of this data for the concept of “road certification” noted above</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitoring of AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring characteristics which are proven to be vital to AV operation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suitability of roads for individual AV use cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Need for assessment program</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maintenance intervention levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needed for effective operation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consistency in road operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roads rules (NTC), consistency, guidance and guidelines</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consider unique AV operational requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consider AV needs eg Road Works Specific</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impact of AV use on roads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro, macro and strategic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impacts on community</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local and global</td>
</tr>
</tbody>
</table>
Final Conclusions

1. Automated vehicles can be viewed as another type of road user
2. A single framework to consider a wide scale of AV interactions is beneficial
3. Guidance has been provided regarding short, medium and long term considerations and actions for road operators in relation to:
 • Physical Infrastructure
 • Digital Infrastructure
 • Road Operations
Questions?

Chris Jones
Program Manager, Automated Vehicles
Austroads
P: +61 3 9854 2146
E: chris.jones@roads.vic.gov.au

Stuart Ballingall
Program Director, Connected & Automated Vehicles
Austroads
P: +61 3 9229 6095
E: stuart.ballingall@roads.vic.gov.au

Scott Benjamin
Technical Director, ITS
WSP Australia
P: +64 3 9861 1285
E: scott.benjamin@wsp.com