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1. Introduction 

1.1. Purpose 

The Austroads Guide to Traffic Management seeks to capture the contemporary traffic management practice 
of member organisations. It provides guidance to practitioners in the implementation of efficient, safe and 
economical management of road traffic. 

Part 2, Traffic Theory, in the Guide to Traffic Management aims to provide practitioners with the theoretical 
background necessary to appreciate the nature of traffic behaviour and to undertake analyses required in the 
development and assessment of both traffic management plans and road designs. 

1.2. Scope 

Table 1.1 outlines the content of each of the 13 Parts of the Guide to Traffic Management. 

Table 1.1: Parts of the Guide to Traffic Management 

Part Title Content 
Part 1 Introduction to Traffic 

Management 
Introduction to the discipline of traffic management. 
Breadth of the subject and the relationship between the various Parts of 
the Guide. 

Part 2 Traffic Theory An introduction to the characteristics of traffic flow and the theories, 
models and statistical distributions used to describe many traffic 
phenomena. 
Processes that practitioners should consider.  

Part 3 Traffic Studies and Analysis Traffic and transport data collection surveys and studies. 
Traffic analysis for mid-block situations (including freeways/motorways). 
Analysis of signalised and unsignalised intersections, including 
roundabouts. 

Part 4 Network Management Broad strategies and objectives of managing road networks to provide 
effective traffic management for all road users. 
Network needs for heavy vehicles, public transport users, pedestrians, 
cyclists and private motor vehicles.  
Guidance on transport networks and network operation planning. 

Part 5 Road Management Guidance on managing mid-block traffic conditions. 
Good practice for access management, allocation of space to various 
road users, lane management. 
Application of speed limits. 

Part 6 Intersections, Interchanges 
and Crossings 

Types of intersection and selection of intersection type.  
Appropriate use and design of various intersection types. 
Traffic management issues and treatments for intersections, interchanges 
and other crossings. 

Part 7 Traffic Management in Activity 
Centres 

Principles for planning the management of traffic in activity centres and 
associated transport nodes. 
Techniques for traffic management in activity centres. 
Examples and key considerations for various types of centres. 

Part 8 Local Area Traffic 
Management 

Planning and management of road space at a local area.  
Guidance on selection, design, application and effectiveness of traffic 
control measures on an area wide or at least whole-of-street basis.  
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Part Title Content 
Part 9 Traffic Operations Applications used in traffic operations.  

System configuration and operation guidance. 
Current practice for common systems including network monitoring, traffic 
signals, congestion management, incident management, 
freeway/motorway management and traveller information. 
Related systems integration and interoperability issues. 

Part 10 Traffic Control and 
Communication Devices 

Signing and marking schemes. 
Traffic signs, static and electronic. 
Pavement markings and delineation. 
Traffic signals and islands. 

Part 11 Parking Parking policy. 
Demand and supply. 
On-street and off-street parking. 
Parking guidance and control devices. 

Part 12 Traffic Impacts of 
Developments 

Guidance on the need and criteria for impact assessment. 
Detailed procedure for identifying and assessing the traffic impacts and 
mitigating their effects. 
Assessment of safety, infrastructure and environmental effects. 

Part 13 Road Environment Safety Principles and management of the safety of road environments within a 
traffic management context. 
Links to relevant sections of the Guide to Road Design and Guide to 
Road Safety. 

 

Part 2, Traffic Theory, addresses the following topics: 

• basic descriptors of traffic flow and relationships between them 

• the stochastic nature of traffic behaviour 

• queuing theory 

• gap acceptance theory 

• vehicle interactions in moving traffic. 

The diagrams in this Guide were prepared by ARRB for Austroads based on basic traffic flow theory. The 
sources are therefore not quoted for individual diagrams.  
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2. Basic Traffic Variables and Relationships 

2.1. Basic Descriptors of Traffic Flow 

2.1.1. Volume 

Volume (sometimes called ‘flow’ or ‘flow rate’ and here designated by the symbol ‘q’) is the number of 
vehicles per unit time passing a given point on a road. Volume may relate to a lane, a carriageway or a road 
and, in the case of a road, may include traffic in either one or both directions. In traffic flow analysis, a 
volume usually relates to only one direction of flow. 

The unit of time used in relation to a volume may vary according to the application. Volumes expressed as 
vehicles per second (veh/s) or vehicles per hour (veh/h) are typically used in traffic flow analysis, while daily 
or annual volumes may be appropriate in other contexts, such as analyses of traffic growth over time. 

2.1.2. Density 

Density (also known as ‘concentration’) (‘k’) is the number of vehicles present within a unit length of lane, 
carriageway or road at a given instant of time. Density is usually expressed as vehicles per kilometre 
(veh/km) or, where appropriate for analysis purposes, vehicles per metre (veh/m). 

2.1.3. Speed 

Speed (‘v’) is the distance travelled by a vehicle per unit time and is typically expressed as either metres per 
second (m/s) or kilometres per hour (km/h). 

The average speed of a stream of vehicles may be expressed as either the time mean speed or the space 
mean speed, which are defined below. 

Time mean speed, v t , is the arithmetic mean of the measured speeds of all vehicles passing a given point 
during a given time interval. Such individual measured speeds are called ‘spot speeds’. 

Space mean speed, v s , is the arithmetic mean of the measured speeds of all vehicles within a given length 
of lane or carriageway, at a given instant of time. 

In Section 2.2.2, it is shown that, for any given traffic stream, space mean speed can be estimated as the 
harmonic mean (the inverse of the mean of speed inverses as in Equation 2.5) of the same spot speeds 
whose arithmetic mean is the time mean speed. 

2.1.4. Headway 

A headway is the time interval separating the passing of a fixed point by two consecutive vehicles in a traffic 
stream. The average headway (‘h’) of the stream over a given time interval is the arithmetic mean of the 
series of headways occurring over that interval. Headway is usually expressed in units of seconds per 
vehicle (s/veh).  

2.1.5. Spacing 

A spacing is the distance between the fronts of two consecutive vehicles in a traffic stream at a given instant 
of time. The average spacing (‘s’) of the stream over a given length of lane or carriageway is the arithmetic 
mean of the individual spacings occurring over that length at that instant of time. Spacing is usually 
expressed in the units of metres per vehicle (m/veh).  
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2.1.6. Lane Occupancy 

Lane occupancy is not one of the five principal traffic flow descriptors but can be very useful (see, for 
example, Section 7.5.2). It is the proportion of time, over a given time interval, that there is a vehicle present 
at a specified point in the lane. Given this definition, lane occupancy is a dimensionless measure.  

While the definition applies to ‘a specified point in the lane’ over ‘a given time interval’, essentially the same 
lane occupancy will be experienced (for the same time interval) along any length of lane over which vehicles 
cannot enter or leave the lane. This will be true as long as the length is such that a vehicle’s travel time over 
that length is short compared to the time interval used in calculating the occupancy. 

It is worth noting that lane occupancy (average carriageway occupancy) is utilised in control systems for 
motorways. It is therefore important that an understanding of the importance of the accuracy of information 
captured to determine lane occupancy is understood. 

2.2. Mathematical Relationships 

2.2.1. Fundamental Relationships 

As a consequence of the above definitions of the five principal traffic flow descriptors – volume, density, 
speed, headway and spacing – the following relationships exist between their average values for any traffic 
stream. 

a. Volume and average headway are the inverses of each other. 

q = 1 / h and h = 1 / q 2.1 

b. Density and average spacing are the inverses of each other. 

k = 1 / s and s = 1 / k 2.2 

c. Volume is the product of density and (space mean) speed. 

q = k . v 2.3 

From these three fundamental relationships, various others may be directly derived, for example,  

q = v / s and s = h . v 2.3 

2.3. Time and Space Mean Speed Relationships 

In Section 2.1.3, it was noted that while the time mean speed is the arithmetic mean of a set of spot speeds 
measured for a traffic stream, the space mean speed of that traffic stream is the harmonic mean of the same 
set of spot speeds. This can be demonstrated as follows: 

Let the values vj, j = 1, . . . , N, be the spot speeds of N vehicles in a traffic stream, measured as they pass a 
given point during a unit time interval. By the definition given in Section 2.1.3, the time mean speed is the 
arithmetic mean of the spot speeds, that is: 

v t  = 
N

v
N

1j
j∑

=   
2.4 
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Now, without loss of generality, the stream of traffic can be considered to consist of n component sub-
streams, i = 1, . . ., n, where sub-stream i has volume q i  and all vehicles in the sub-stream have the same 
speed, v i . The density, k i , of sub-stream i is then such that q i  = v i  . k i . 

In a unit length of road at a given instant, there are k i  vehicles from sub-stream i travelling at speed v i , for 
all i, i = 1, . . . , n. Thus, by its definition in Section 2.1.3, the space mean speed is: 

v s  = 
∑

∑

=

=
n

1i
i

n

1i
ii

k

v.k
 = 
∑

∑

=

=

n

1i i

i

n

1i
i

v
q

q
 = 
∑
=

N

1j jv
1

N  
2.5 

 

This is the harmonic mean of the spot speeds.  

Equation 2.5 also identifies the space mean speed as the length of a given section of lane or carriageway 
divided by the average travel time of vehicles in the traffic stream over that length. This can be seen by 
noting that, if that length is L, the final quotient in Equation 2.5 can be written equivalently as: 

N
v
L
L

N

1j j 









∑
=

 
 

 

For any given traffic stream, time mean speed is always greater than space mean speed except when all 
vehicles have exactly the same speed, in which case the two mean speeds are equal. This is further 
discussed, with the help of a numerical example, in Commentary 1.  

[see Commentary 1] 
 

Wardrop (1952) showed that, if 2
sσ  is the variance of space speeds (as defined in Commentary 1), an 

approximate relationship between the two mean speeds is: 

v t  = vs  + 
s

2
s

v
σ  2.6 

 

Finally, the correct average speed to use in Equation 2.3 is the space mean speed, rather than the time 
mean speed. This can be demonstrated by first observing the total volume of the traffic stream considered in 
Section 2.2.1 is: 

q = ∑
=

n

1i
iq  2.7 

 

and the total density is: 

k = ∑
=

n

1i
ik  = ∑

=

n

1i i

i

v
q  2.8 
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Therefore, as shown in Equation 2.5, 

k
q

 = 
∑

∑

=

=

n

1i i

i

n

1i
i

v
q

q
 = vs  

2.9 

 

That is, the quotient of q and k is the space mean speed. 

2.4. Graphical Relationships for Uninterrupted Flow 

Uninterrupted flow occurs in a traffic stream that is not delayed or interfered with by factors external to the 
traffic stream itself (such as intersections, pedestrian crossings etc.) but only by its own, internal, traffic 
interactions. In contrast, interrupted flow occurs when external factors have significant effects on the traffic 
flow. 

It is instructive to examine the graphical relationships between the three principal traffic flow descriptors, 
volume, speed and density, for the case of uninterrupted flow, to examine the correspondence between the 
different graphical relationships and to interpret them in terms of traffic conditions on the road. 

Figure 2.1 illustrates the relationship between (average) speed and volume. Feasible combinations of these 
two variables must lie within the region bounded by the vertical axis (zero minimum volume), the maximum 
feasible speed line, the minimum feasible average headway line (defining maximum feasible volume) and the 
maximum feasible density line (that maximum being the tangent of the angle θ). Typical observed speed-
volume combinations lie on or close to the curve shown. The diagram is interpreted in terms of on-road traffic 
conditions later in this section. 

Figure 2.1: Speed-volume relationship 

 
 

qmax Volume q 

Maximum  
feasible 
density 

Maximum  
feasible 
speed 

Minimum feasible 
average headway  

vf 

Speed 
v 

θ 

0 
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Figure 2.2 shows the typically observed relationship between (average) speed and (average) density for 
uninterrupted flow conditions. In this close-to-linear relationship, the speed steadily decreases from its 
maximum value, the mean free speed, v f , when the density is at or close to zero, to zero speed at the 
maximum or ‘jam’ density, k j . If a rectangle is drawn with one corner at the origin and the diagonally opposite 
corner at a point of interest, then its area is the volume corresponding to that point of interest. Interpretation 
of this figure in terms of on-road conditions also is provided below. The discussion in Commentary 2 of the 
implications if the speed-density relationship were in fact perfectly linear, provides useful insights.  

[see Commentary 2] 

Figure 2.2: Speed-density relationship 

 

Figure 2.3 shows a typical volume-density relationship for uninterrupted flow as a curve that might be fitted to 
observed traffic data. As the (space mean) speed in these steady flow conditions is the quotient of volume 
and average density, the space mean speed corresponding to any point on the curve (such as point P) is 
represented by the slope, tan α, of a line from the origin to that point. The slope of the curve at the origin, tan 
β, is thus the mean free speed, vf . 

Figure 2.3: Volume-density relationship 

 

The correspondence between Figure 2.1 to Figure 2.3 and their interpretation in terms of on-road conditions 
is best discussed by reference to Figure 2.4, which combines the relationships of Figure 2.1 to Figure 2.3 
and indicates points representing the same traffic conditions, which are designated by the same letter in 
each part of the diagram. 

 

vf 
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v 
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Figure 2.4: Speed-volume-density relationships 

 

 

At the points A in each part of Figure 2.4, density is close to zero, that is, there are very few vehicles on the 
road. Volume is also close to zero and there are no interactions between vehicles in the traffic stream to 
prevent drivers from travelling at their desired speeds, the average of which will be the mean free speed, v f . 

From A to the vicinity of B, traffic conditions can be described as ‘free flow’, in which each vehicle suffers 
very little restriction due to other traffic in the stream. Such restrictions start to become quite significant as 
the point B is passed. This could be considered the region of normal flow, in which drivers experience an 
increasing lack of freedom to manoeuvre (e.g. change lanes, change speed) but traffic nevertheless moves 
steadily at a reasonable speed, at least until conditions in the vicinity of C are reached. 

As the point C is approached, traffic conditions become very unstable and substantial fluctuations in both 
speed and density can occur with very little change in volume. C is the point of maximum achievable volume 
and any further increases in density only decrease speed to such an extent that volume also decreases 
rapidly. Traffic is operating in the ‘forced flow’ region from C to D, the ultimate condition of which is reached 
at D, where volume is zero because the traffic is stationary at a maximum density (‘bumper-to-bumper’ 
condition) termed the jam density. 

Thus, a driver would perceive excellent traffic conditions in the region of A, deteriorating gradually from A to 
B and towards C, and becoming poor to bad around C and from C to D. 
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2.5. Kinematic Wave Model 

An extension of the fundamental relationships is to consider speed, flow and density as functions of time (t) 
and space (x), and the three parameters are not independent of one another. For example, flow is a function 
of density k, which is a function of time t. A model that considers the traffic process in time and space is the 
kinematic wave model of Lighthill and Whitham (1955), which is more suitable for high density conditions and 
therefore has its place in analysing flow breakdowns.  

The kinematic model assumes that high density traffic will behave like a continuous fluid (hence also called a 
continuum model). Consider the flow in and out of a short length of road ∂x. The condition of continuity 
requires that if the density of vehicles has increased it must have been due to a difference in the amounts 
flowing in at one end and out at the other, or 

 ∂k
∂t

+
∂q
∂x

 = 0 
2.10 

where   

 q is the flow (veh/h)  

 k is the density (veh/km)  

 x is distance (km)  

 t is time (h) to travel a distance of x km  
 

With q as a function of density k, Lighthill and Whitham developed Equation 2.10 further into the LW model 
as follows: 

 ∂k
∂t

+
∂q
∂k

∂k
∂x

 = 0 
2.11 

 

Define below a wave speed U that represents the speed of waves carrying continuous changes of vehicle 
flow in a traffic stream: 

 U = 
∂q
∂k

 2.12 

then ∂k
∂y

 + U
∂k
∂x

= 0 2.13 

 

Because q = v k from Equation 2.3, the wave speed: 

 U = 
∂(vk)

∂k
  

  = v + k 
∂v
∂k

 2.14 
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Because speed decreases with density, ∂v
∂k

 is always negative (Figure 2.4) and the wave speed U is therefore 
always less than the space mean speed v.  

The relationship between space mean speed (v) and wave speed (U) are illustrated in the flow-density 
diagram in Figure 2.5, which also shows the shock wave speed (USW). The following observations can be 
made (Wohl & Martin 1967): 

• At low densities when vehicle-to-vehicle interactions are minimal, ∂v
∂k

 is almost zero and the wave speed 
is similar to the space mean speed. The wave moves forward relative to the road. 

• At the maximum flow and critical density, the wave is stationary. At densities higher than the critical 
density (kc), the wave moves backward relative to the road.  

• The wave speed changes with density according to Equation 2.14 and a traffic stream can have different 
densities on different sections of a freeway. A section of light traffic could follow a section of high density 
due to a decrease in lanes, an accident or on-ramp traffic. The wave in the low density traffic moves 
forward (relative to the freeway) at a speed faster than the wave in the high density traffic.  

• When the two waves meet, a new wave called a shock wave will be formed. All three waves move 
forward for the situation shown in Figure 2.5. The shock wave speed USW is given by: 

 Usw = 
q2  −  q1
k2  −  k1

 2.15 

 

Figure 2.5:  The relationship between vehicle speed, wave speed and shock wave speed 

 

Figure 2.6 illustrates the case for a negative shock wave speed due to capacity decrease at a bottleneck 
(e.g. lane drop) on a freeway. Two fundamental diagrams are required. The inner diagram represents the 
characteristics of the bottleneck with capacity qb less than the approach section. If the approach flow is larger 
than qb, a complex queuing situation occurs at the entry to the bottleneck.  

The density at the bottleneck entry suddenly increases from the density at C to the density at E in Figure 2.6. 
The wave speed at E is negative with respect to the freeway and will be reflected from the bottleneck back to 
the approach section. The reflected wave will meet the oncoming wave corresponding to the slope at C. A 
shock wave of negative speed relative to the freeway is formed. The effect of the bottleneck will be reflected 
along the entire approach section if the arrival flow remains constant, with a consequent loss of maintaining 
capacity flow (qm).  
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Edie and Foote (1958) reported how shock waves were generated at an upgrade leading to the Holland 
Tunnel exit in New York. The shock waves propagated backward towards the tunnel entry with inefficient 
traffic flow. The solution was to control the entry of vehicles into the tunnel so that the entry flow did not 
exceed the capacity of the bottleneck section. The vehicles entered in short platoons of about 40 veh every 2 
min with a 10 s gap between platoons. 

Figure 2.6: Fundamental diagrams of a bottleneck section and the approach section 

 

The kinematic model can be solved using the finite difference (or finite element) method and has continued 
to be an interesting area of research (see, e.g. Leo & Pretty 1992, Michalopolous 1988, Ngoduy, 
Hoogendoorn & Van Zuylen 2006, Papageorgiou 1983, Payne 1971). At the University of Queensland, Leo 
and Pretty were able to model the propagation of congested density upstream in a freeway lane drop 
situation. They also modelled the platoon movements in a pair of coordinated signals at very small, discrete 
levels of time (0.5 to 1 s) and space (about 15 m).  

The LW model is a first order model with limitations such as (Papageorgiou 1998):  

• Assume that vehicle speeds can change instantaneously, i.e. large values of acceleration and 
deceleration rates are assumed possible at a bottleneck (E in Figure 2.6). 

• Predict that the tail-end of a platoon on arterial roads will speed up to catch up with the main platoon 
when it is more common to observe a dispersed tail-end. 

Assume that outflow (qb) at a freeway bottleneck is best achieved with some congestion at the bottleneck 
entry. This is equivalent to assuming that the outflow cannot be increased by avoiding mainline congestion, 
i.e. no control. The reality is that some control of a bottleneck (if possible) can improve throughput.  

Second order LW models have been proposed (Daganzo 2006, Papageorgiou, Blosseville & Hadj-Salem 
1990, Payne 1971, Schonhof and Helbing 2007) to overcome these limitations.  

The use of Kinematic models in understanding freeway flow breakdowns is discussed further in 
Section 7.5.4. 
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3. The Stochastic Nature of Traffic Behaviour 

3.1. Probabilistic Aspects of Traffic Flow 

Traffic behaviour is influenced by a wide range of factors. Each vehicle on the road system is controlled by a 
driver whose individual decisions, on times of commencement of trips, routes to take, speeds at which to 
travel and many other things, determine where it is on the road network at any given time and what influence 
it may have on other road users. Equally, the decisions of others (such as pedestrians wishing to cross a 
road), the operation of traffic control devices (such as signals), weather and lighting conditions introduce 
further variation into the traffic situation faced by each road user. Given the variety of these and other similar 
factors, it is not surprising that probability theory should play a significant role in the description and analysis 
of traffic flows. 

While many aspects of traffic behaviour may be stochastic in nature, they are not necessarily random. A 
wide variety of different statistical distributions may apply, for example, to the pattern of arrivals of vehicles at 
a particular location along a road.  

If the location is distant from any external factor that influences traffic behaviour, such as a signalised 
intersection or a toll booth, then vehicle arrivals may well be random and statistical distributions appropriate 
to random behaviour would be applicable.  

On the other hand, if the location at which vehicles are arriving is a short distance downstream from a 
signalised intersection, the pattern of arrivals would be far from random but would be likely to consist of 
periods of closely spaced arrivals of vehicles in ‘platoons’, separated by periods of much lighter traffic flow, 
which would be described by different statistical distributions. A further example is traffic on a freeway 
entrance ramp at a point downstream from a ramp metering device; such a device is designed to release 
vehicles at regular intervals, so that a uniform distribution of arrivals would apply at the downstream point. 

The purposes of this section are, firstly, to provide information on some of the statistical distributions 
commonly employed in the development of traffic theory and in traffic analysis and, secondly, to explore their 
application to traffic headway distributions, that is, the patterns of arrivals of vehicles, pedestrians, cyclists 
and/or other road users at given points on the road, which is fundamental to many aspects of traffic theory. 

3.2. Statistical Distributions in Traffic 

Both discrete and continuous probability distributions may be used in describing traffic flows. Discrete 
distributions are those applicable to situations in which the item of interest can take only integer values, for 
example, the number of vehicles that will enter a car park through a particular gate during the next five 
minutes. Continuous distributions are those in which the item of interest can take both integer and non-
integer values, for example, the time a particular vehicle will spend in the queue waiting to enter the car park 
via that gate. 

In the following sections a number of distributions of both types are discussed. 

3.2.1. The Binomial Distribution 

The situation often used to introduce the binomial distribution is that of n independent trials or experiments, 
each of which can have only one of two possible outcomes, often designated as ‘success’ and ‘failure’. The 
probabilities of the outcomes known are the same for each trial and, because only the two outcomes are 
possible, necessarily add to one. A simple example of such a situation is a series of n tosses of a true coin, 
in which only the two outcomes ‘heads’ and ‘tails’ are possible and each has a probability of 0.5. 

A discrete probability distribution is appropriate to predict the number of ‘successes’ obtained in n trials or the 
number of ‘heads’ in n tosses of the coin. 
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The binomial frequency distribution can be written as: 

  b(x) = �
n
x
� px(1− p)n-x 3.1 

where    

b(x) = the probability of exactly x successes in n trials (x ≤ n)  

p = the probability of a success in any one trial  

�
n
x
� = 

the binomial coefficient, equal to the number of different combinations of x items that can 
be formed from a group of n items n!

x!(n−x)!
  

 

The mean of the binomial frequency distribution, or the expected number of ‘successes’ in n trials if p is the 
probability of a ‘success’ in one trial, is: 

  pn)x(E =  3.2 

And the variance of x  is: 

  )p1(pn)x(2 −=σ  3.3 

In traffic applications, the cumulative form of the binomial distribution is often useful. This can be written as: 

  
∑
=

=
X

0x
)x(b)X(B  

3.4 

where    

B(x)  the probability of X or less successes in n trials  

b(x)  is as defined in Equation 3.1  
 

Example application 

The situation of vehicles entering a car park through a particular gate (say Gate A) provides an example of 
how the binomial distribution might be applied in a traffic context. Assume that, at a certain time of day, the 
car park is being accessed by 300 veh/h and that 35% of these, on average, use Gate A. Assume also that 
the aim is to determine the probability of more than six vehicles using Gate A over a two minute period. 

On average, 10 vehicles will access the car park over a two minute period. These can be considered as 10 
independent trials, in each of which there is a probability of 0.35 that the vehicle will use Gate A and a 
probability of 0.65 that it will use another gate. The probability that more than six of the 10 vehicles will use 
Gate A is 1 – B(6) where B(6) is calculated using Equation 3.4 with X = 6 and each b(x). x = 1,..., 6, 
calculated from Equation 3.1, with n = 10 and p = 0.35. It is found that there is a probability of 0.0260, or 
2.6%, that more than six vehicles will use Gate A.  
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Note that the same answer can be obtained as the probability of three or less of the 10 vehicles using 
another gate, rather than Gate A, that is, B(3), calculated using Equation 3.4 with X = 3 and each b(x), x = 
1,..., 3, being calculated from Equation 3.1, with n = 10 and p = 0.65. 

3.2.2. The Poisson Distribution 

Mathematically, the Poisson distribution is the limit of the binomial distribution as n approaches infinity and p 
approaches zero while the product n.p remains constant. The Poisson frequency distribution is: 

  

!x
me)x(p

xm−

=  
3.5 

where    

p(x) = the probability of x occurrences of an event in a situation for which the expected 
number of occurrences is m 

 

e = the base of Naperian logarithms  
 

The Poisson distribution is discrete, in that x can take only integer values. However, m is not restricted to 
integer values. 

As would be expected, the mean, or expected value, of the Poisson distribution is: 

  m)x(E =  3.6 

 

Also, in keeping with its nature as the limit of the binomial distribution as p approaches zero and by 
comparison with Equation 3.3, the variance of the Poisson distribution is: 

  m)x(2 =σ  
3.7 

 

As is the case with the binomial distribution, the cumulative Poisson distribution is often useful in traffic 
theory and analysis. This cumulative form is: 

  
∑
=

=
X

0x
)x(p)X(P  

3.8 

where    

P(X) = the probability of x or less occurrences of an event where the expected number of 
occurrences is m 

 

p(x) = is as defined in Equation 3.5  
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The most commonly quoted example of an application of the Poisson distribution in a road traffic context is 
the estimation of the probability that a certain number of vehicles will pass a particular point on a road during 
a given time period, given that vehicles arrive randomly at a known average rate. For example, if the average 
volume is 720 veh/h, the aim may be to estimate the probabilities that (a) no vehicles will pass and (b) three 
or more vehicles will pass during the next 10 s.  

At a flow rate of 720 veh/h, the average number of vehicles passing in any 10 s interval is 2.0, which is thus 
the appropriate value for m in Equation 3.5. Applying Equation 3.5 for different values of x: 

  1353.0!0)0.2(e)0(p 00.2 == −   

  2707.0!1)0.2(e)1(p 10.2 == −   

  2707.0!2)0.2(e)2(p 20.2 == −   

 

The first of these values indicates that the answer to question (a), the probability that no vehicles will pass 
during the next 10 s, is 13.53%.  

Applying Equation 3.8 with X = 2, indicates that the probability that two or less vehicles will pass during the 
next 10 s is the sum of the three values above, i.e., 0.6767 or 67.67%. Thus the answer to question (b), the 
probability that three or more vehicles will pass, must be (100–67.67)% = 32.33%. 

A different example of an application of the Poisson distribution in a road traffic context is in the analysis of 
crashes on a section of road that has an average of 19.5 crashes per year. Assume that there is negligible 
seasonal variation in crash likelihood and that, for crash response planning purposes, the probability of more 
than one crash occurring on this section of road in any one week of the year needs to be estimated. 

The average number of crashes in a week is 19.5 / 52.18 = 0.3737. Applying Equation 3.5 with m = 0.3737, 
gives p(0) = 0.6882 and p(1) = 0.2572, so that, p(1) = 0.9454, by Equation 3.8. Therefore, the probability of 
more than one crash occurring in any one week of the year is estimated as 1–p(1) = 0.0546, or 5.46%. 

3.2.3. Negative Binomial Distribution 

The negative binomial distribution, like the binomial distribution, is applicable to situations in which there are 
two possible outcomes in each trial of a series of trials. These outcomes can be called ‘success’ and ‘failure’, 
with probabilities of occurrence in any one trial of p and 1–prespectively. The negative binomial distribution 
gives the probability that the kth ‘success’ will occur in the nth trial. This may be expressed as: 

knk )p1(p1n
1k)p,k;nPr( −−




 −

−=  ...,2k,1k,kn ++=  
3.9 

 

3.2.4. Geometric Distribution 

The geometric distribution is a special case of the negative binomial distribution. If x is the sequence number 
of a trial, the geometric distribution gives the probability that the first ‘success’ will occur in the nth trial after a 
sequence of n–1 ‘failures’. This may be expressed as: 

1n)p1(p)p,1;nPr( −−=  ...,3,2,1n =  3.10 
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A simple example of an application of the geometric distribution is determining the probability that it will take 
exactly four tosses of a coin before the first ‘head’ comes up.  

In a traffic context, an example might be the probability that the next three vehicles to access the car park 
considered in Section 3.2.1 will each enter by Gate A and the 4th will enter by another gate. This is evaluated 
using Equation 3.10 with p = 0.65 (i.e. ‘failure’ ≡  entry by Gate A), to give 

0279.0)35.0()65.0()4xPr( 3 ===   

 

The geometric distribution also has application in relation to queue lengths, as seen in Section 4.2. 

3.2.5. Negative Exponential Distribution 

The negative exponential frequency distribution is illustrated in Figure 3.1. It is a continuous distribution and 
has the form: 

xe)x(f λ−λ=  3.11 

where λ  is a known parameter.  

Figure 3.1:  Negative exponential frequency distribution 

 

The mean of the negative exponential distribution, or the expected value of x is: 

λ
=

1)x(E
 

3.12 

 

and the variance is: 

2
2 1)x(

λ
=σ

 

3.13 

 

 

 

f(x) 

 

 x 



Guide to Traffic Management Part 2: Traffic Theory 

 
 

 
 

Austroads 2015 | page 17 
 

The negative exponential is the simplest relationship used to describe the distribution of headways in 
randomly arriving traffic, as is discussed in Section 3.3. The displaced negative exponential distribution, a 
variation allowing for a minimum possible headway in a lane of traffic, is also discussed in Section 3.3, as are 
other types of headway distributions. 

3.2.6. Other Distributions 

The Borel-Tanner distribution is a discrete distribution with particular application to consideration of bunch 
sizes in composite models of traffic flow, as discussed in Section 3.3.4. 

A number of other discrete probability distributions are applicable to aspects of traffic analysis. For further 
information, the reader is referred to Homburger (1982) or texts such as Johnson, Miller and Freund (2011) 
or Walpole et al. (2011). 

Other continuous distributions relevant to traffic include the normal distribution, Pearson distributions and the 
Erlang distribution. Some of these are briefly mentioned in Section 3.3, and references are provided. 

3.3. Traffic Headway Distributions 

Prior to discussing different models for headway distributions, it is observed that, conventionally, a headway 
between two consecutive vehicles is associated with the trailing vehicle. In other words, the headway for any 
vehicle is considered to be its time separation from the vehicle immediately ahead of it, rather than from the 
vehicle immediately behind (see, for example, Akcelik et al. 1999). Of course, this time separation is between 
the times at which the same point on each vehicle (typically the front) passes a given location on the road. 

3.3.1. Random Arrivals – Negative Exponential Headways 

The distribution of headways in a traffic stream is modelled according to the assumed pattern of vehicle 
arrivals, which is influenced by the traffic volume, the lane configuration of the road or carriageway involved, 
external influences on the traffic flow and other factors. One of the simpler and more widely applicable 
assumptions is that of random arrival of vehicles, for which the negative exponential headway distribution 
applies, as shown below. 

Consider a one-way traffic stream with an average volume of q veh/s and random vehicle arrivals. The 
average number of vehicles arriving during a time interval of t seconds is qt and the probability of x vehicles 
arriving during any particular t second interval is given by the Poisson distribution (see Equation 3.5) as: 

!x
)qt(e)x(p

xqt−

=  
3.14 

 

The probability of a headway greater than or equal to t is the probability of zero arrivals during a t second 
interval, that is: 

qt
0qt

e
!0

)qt(e)thPr( −
−

==≥  
3.15 

 

And 

qte1)thPr( −−=<  3.16 
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Equation 3.16 has the form of a cumulative probability distribution. The associated frequency distribution is 
found by differentiation to be: 

qteq)t(f −=  3.17 

 

This is the negative exponential distribution (see Equation 3.11, Section 3.2.5) with the parameter λ  equal to 
q. Graphically, it has the same form as Figure 3.1, as is shown in Figure 3.2. 

The mean of the negative exponential headway distribution is, of course, 1/q and the variance of the 
distribution is 1/q2, consistent with Equations 3.12 and 3.13.  

Figure 3.2:  Negative exponential headway distribution 

 

The proportion of all headways that fall within the small interval between a given duration t and duration t + dt 
is the shaded area in Figure 3.2, that is: 

Pr(t ≤ h < t + dt) = qe-qt.dt 3.18 
 

Therefore, over a significant period H , containing qH headways, the number of headways of duration 
between t and t + dt is: 

N(t ≤ h < t + dt) = qH.qe-qt.dt 3.19 
 

and, as dt is infinitesimally small, the total time spent in such headways is: 

T(t ≤ h < t + dt) = t.qH.qe-qt.dt 3.20 
 

Hence, the total time spent in headways greater than or equal to t is given by: 

∫
∞

−=≥
t

qt dt.eq.tqH)th(T   

)qt1(e.H qt += −  3.21 
 

 

 

 

f(t) 

 

 

Headway size 
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Substitution of t = 0 in Equation 3.21 produces the expected result that the total time spent in all headways is H. 

It follows from Equation 3.21 that the proportion of time spent in headways greater than or equal to t is: 

)qt1(eH
)th(T qt +=≥ −  3.22 

 

The average duration of headways greater than or equal to t is the total time spent in such headways divided 
by the number of such headways, that is: 

qt

qt

av e.qH
)qt1(eq.H)th(h

−

− +
=≥   

t
q
1

+=  
3.23 

 

Substitution of t = 0 in Equation 3.23 produces the expected result that the average duration of all headways 
is 1/q. 

In a derivation similar to that above, it is easily shown that the average duration of headways less than t is: 

qt

qt

av e1
et

q
1)th(h

−

−

−
−=<  3.24 

 

Because the negative exponential headway distribution is derived from the assumption of random arrivals of 
vehicles, its applicability is restricted to lighter traffic flows, where there are few vehicle interactions to 
influence the travel behaviour of any individual vehicle. Further, it applies only to uninterrupted flow, that is, 
traffic flow that has not been affected by significant external influences, such as the presence of a signalised 
intersection shortly upstream, which can greatly affect arrival patterns. Finally, the negative exponential 
distribution allows headways right down to zero duration and therefore cannot correctly represent any 
situation in which the minimum feasible headway is greater than zero, such as traffic flow in a single lane. 

Other types of headway distributions have been proposed to address these and similar issues and a number 
of these are briefly discussed in the following sections. 

3.3.2. Equal Headways  

The simplest headway distribution is based on the assumption of equal headways between successive 
vehicles in the traffic stream.  

This distribution might be assumed, for example, a short distance downstream of a metering device on a 
single-lane entrance ramp to a freeway. The distance would be limited because the different acceleration 
behaviour of different vehicles would quickly introduce variation into the headways. The restriction to a single 
lane would be necessary because a metering device with more than one lane would release vehicles side-
by-side, that is, separated by headways close to zero; combined with the headways equal to the release 
interval of the metering device, these would produce an overall headway distribution consisting of two sets of 
uniform headways. 
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For a traffic stream with volume q, the variance of the basic uniform distribution is zero and the mean 
headway is the uniform size of each headway, that is: 

q
1h)h(E ==  

3.25 

 

3.3.3. The Displaced Negative Exponential Distribution 

Where vehicle arrivals are essentially random but the minimum possible headway is greater than zero (which 
would apply, for example, to single lane flow with no overtaking), the displaced negative exponential 
distribution may be an appropriate representation of headways. As illustrated by Figure 3.3:  , the frequency 
distribution for the displaced negative exponential has the same shape as the negative exponential but is 
displaced to the right by an interval β , equal to the minimum possible headway. 

Figure 3.3:  Displaced negative exponential headway distribution 

 

Mathematical manipulation of the basic negative exponential form to provide a unit area under the graph 
from β=t  to ∞=t produces the displaced negative exponential distribution: 

β−
β−−

β−
= q1

)t(q

e
q1

q)t(f   for β≥t  3.26 

 

Derivations paralleling those used above for the standard negative exponential lead to the following results. 

The probability of a headway greater than or equal to t , for β≥t , is: 

β−
β−−

=≥ q1
)t(q

e)thPr(   for β≥t  
3.27 

 

The average duration of headways greater than or equal to t, for β≥t , is: 

β−+=≥ t
q
1)th(hav   for β≥t  

3.28 

Note that Equation 3.28 gives an average headway of 1/q for all headways not less than β . 

 

  

 

f(t) 

t 
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3.3.4. Composite Headway Distribution Models  

In composite (or mixed) models of traffic headway distributions, the distinction is made between free flowing 
vehicles and restrained vehicles, the latter being vehicles in the traffic stream forced (e.g. by limited lane 
changing or overtaking opportunities) to follow the vehicle immediately ahead. In such cases, a traffic bunch 
consists of either a single (free flowing) vehicle or a leading vehicle followed by one or more restrained 
vehicles. 

Establishment of a composite headway distribution model requires specification of a sufficient number of the 
following components (among which there is some overlap): 

• the proportion of restrained vehicles in the traffic stream (the remainder being free flowing) 

• the distribution of bunch sizes 

• the distribution of headways for restrained vehicles 

• the distribution of headways for free flowing vehicles (which, given that a single free flowing vehicle is 
defined as a bunch of size 1, is equivalent to the distribution of inter-bunch headways). 

The double exponential model and the Borel-Tanner model are briefly discussed below, to illustrate how 
some of these components may be specified. 

Double exponential distribution 

The double exponential model combines a displaced negative exponential distribution for the headways of 
restrained vehicles with a standard negative exponential distribution for the headways of free-flowing 
vehicles. The double exponential headway distribution described here should not be confused with the 
Gumbel distribution, which sometimes is also referred to as the ‘double exponential’ distribution. 

Because of the separation of the traffic stream into restrained and free-flowing sub-streams, it is simpler to 
state the model in terms of the average headway for each sub-stream, rather than in terms of the sub-stream 
volume. As volume q is the inverse of average headway h  in any traffic stream, this simply means 

substituting h1  for q in relevant equations from Sections 3.3.1 and Section 3.3.3. 

Let the proportion of restrained vehicles in the total traffic stream be denoted by θ  and the minimum and 

average headways for such vehicles by β  and rh  respectively. Then the displaced negative exponential 
distribution of restrained vehicle headways is such that: 

β−
β−−

θ=≥ rh
)t(

e.)thPr(  for β≥t   

and  θ=≥ )thPr(  for β≤t  3.29 

 

The proportion of free flowing vehicles in the total traffic stream is )1( θ−  and, if their average headway is 

denoted by fh , their standard negative exponential headway distribution is such that: 

fh
t

e.)1()thPr(
−

θ−=≥  for 0t ≥  
3.30 
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Equations 3.29 and 3.30 together make up the double exponential headway distribution, one example of a 
distribution that may be applicable when bunching is likely to occur. For further details, see Salter and 
Hounsell (1996) and early investigations by Schuhl (1955) and Kell (1962). 

A less complex headway model that may be used in the presence of bunching is the simple dichotomised 
distribution, in which within-bunch headways are each equal to a specified minimum value and inter-bunch 
(or free flowing vehicle) headways are greater than this value. 

Borel-Tanner distribution 

The Borel-Tanner distribution (Tanner 1961) gives a good representation of the distribution of bunch sizes in 
traffic on two-lane, two-way roads. It evaluates the probability of observing a bunch of n  vehicles where the 
average bunch size is m  vehicles as: 

!n
e.)e..n(P 1n

n

θ−
−θ−θ=  n = 0, 1, 2, … 

3.31 

 

where =
−

=θ
m

1m
 the proportion of restrained vehicles in the traffic stream. 

Headway distributions for following vehicles within a bunch and for free flowing vehicles are also required. 
For following vehicles, a distribution giving constant or close-to-constant headways (i.e. with small variance 
about an average headway) or a displaced negative exponential distribution might be assumed. For free-
flowing vehicles, a negative exponential or some other distribution describing random or semi-random 
arrivals may be considered appropriate. 

3.3.5. Other Headway Distributions 

A variety of other headway distributions, both single and composite, have been developed to represent 
observed behaviour under different conditions of traffic flow.  

Among the single distributions are the Pearson Type I (or beta) distribution and the Pearson Type III (or 
gamma) distribution (Ashton 1966). A particular case of the latter is the Erlang distribution in which the 
principal parameter is restricted to integer values. This has been shown to fit well with field observations of 
headways in traffic with essentially random arrivals and limited opportunities for overtaking, particularly in the 
representation of smaller headways. The generalised Poisson distribution is related to the gamma 
distribution in the same way that the Poisson distribution is related to the negative exponential distribution. 

Among other composite models is Miller’s travelling queue model (Miller 1961), in which randomly placed 
vehicles are moved backward in time, where necessary, to maintain a constant minimum headway. The 
model leads to a bunch size distribution that has shown close agreement with observed multi-lane flows. 

For further information on headway distributions, the reader is referred to the references already mentioned 
and to general coverage of the topic in Drew (1968), Gipps (1984), Hoban (1984a and b), May (1990) and 
Salter and Hounsell (1996).  

3.3.6. Matching Headway Distribution Type to Observed Behaviour 

In many cases, a key decision for the traffic analyst is the selection of the type of headway distribution that is 
either: 

a. most likely to correspond with the traffic situation under consideration 

b. likely to best match a set of headways that has been observed in field measurements. 
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For the category (a) decisions, some guidance has been provided throughout the sections preceding of 
Section 3.3 and this is summarised in Table 3.1. 

Table 3.1:  Areas of application of different types of headway distribution 

Type of headway 
distribution 

Area(s) of application 

Equal headways A short distance downstream of a traffic metering device 
Negative exponential Wherever random arrivals of vehicles may occur, which usually is in situations of 

uninterrupted flow with low to medium traffic volumes and two or more lanes in the same 
direction of flow 

Displaced negative 
exponential 

Uninterrupted flow at medium to low traffic volumes, but with conditions (e.g. single lane 
flow) that place a lower limit on the possible size of headways 

Double exponential Headways in uninterrupted flow at medium to high traffic volumes with restricted overtaking 
opportunities, where bunching of traffic is likely to occur 
May also be applicable to platooned traffic in an interrupted flow situation (e.g. downstream 
from a signalised intersection) 

Borel-Tanner Describes bunch-size distributions for uninterrupted flow at medium to high traffic volumes 
with restricted overtaking opportunities, where bunching of traffic can occur 

Miller’s travelling queue 
model 

Models both headway distributions and bunch size distributions for bunched traffic in an 
uninterrupted flow situation with limited overtaking opportunities or for platooned traffic 
downstream of a traffic interruption 

Erlang Uninterrupted flow with low to medium volumes (conditions for random arrivals) but with 
limited opportunities for overtaking 

 

Category (b) decisions arise when field measurements of headways are available. In such cases, the 
characteristics of the field data can be examined analytically and/or graphically to identify types of theoretical 
distributions that most closely match the data. For any type of distribution so identified, further analysis can 
then be undertaken to evaluate the distribution parameters that provide the best fit with the observed data. 

If an identified distribution is one of the standard types considered in the treatments of queuing theory and 
gap acceptance theory in Sections 4 to 6, the formulae presented in those sections can be applied directly to 
the analysis of traffic situations.  

If, on the other hand, the identified distribution of headways is not one of those standard types, it will be 
necessary for the analyst to develop formulae similar to those in Sections 4 to 6, but based on the identified 
distribution. This can be done (perhaps with the aid of suitable mathematical or statistical advice) by 
following the methods employed in the derivations presented in Sections 4 to 6 and in their associated 
commentaries. Such a process is illustrated by Commentary 10, which derives gap acceptance formulae, 
using the same approaches as used in Commentaries 5 and 7 for negative exponential headways in major 
road traffic, but adapts the derivations to the case of a displaced negative exponential distribution of major 
road headways.  

 [see Commentary 5] 

 [see Commentary 6] 

 [see Commentary 7] 

 [see Commentary 10] 
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4. Queuing 

4.1. Introduction and Definitions 

In many traffic situations, particularly at intersections, conflicts between different traffic streams and/or 
fluctuations in flow can result in the formation of queues of vehicles. Queuing theory provides a way of 
analysing queue behaviour and predicting its consequences, including queue lengths and queuing delays. 

The complete specification of a queuing system requires the values of the following five input characteristics: 

• the distribution of arrivals, including the average arrival rate and the type of distribution, e.g. regular, 
random, Erlang, etc. 

• whether the input source (i.e. the pool from which arrivals are drawn) is finite or infinite 

• the queue discipline, i.e. the means of deciding the order in which queue members obtain service, which 
may be first-come-first-served, random, some priority system, etc. 

• the channel configuration, which includes the number of separate queues, the number of service 
positions and whether queue members are served singly, in parallel or in series 

• the distribution of service times for each service point, including the average service rate and the type of 
distribution. 

Section 4.2, provides a brief outline of graphical representation and analysis of queuing situations, illustrated 
by a deterministic example in which both arrival and service behaviour are known with certainty. 

Subsequent sections consider an elementary stochastic queuing system specification – that of a single 
channel, single server system with random arrivals, random service times and a first-come-first-served 
discipline. This is usually denoted as an [M/M/1] queuing system, the first M indicating random (Poisson) 
inputs, the second M indicating random (negative exponential) service and the 1 indicating the single-
channel queue. For more complex systems, readers should refer to texts such as Cox and Smith (1961) and 
Drew (1968). 

Two further, behavioural characteristics of a queuing system also require definition. 

• The state of a queuing system. A queuing system is in state n if it contains exactly n queue members, 
including those in line and those in service. 

• Utilisation factor. The utilisation factor, ρ, is the ratio of the average arrival rate, r, to the average 
service rate, s, that is: 

ρ =  
s
r  

4.1 

 (In the technical literature on queuing, some authors refer to ρ as the intensity of the queuing system.) 

If ρ is less than one, queue length may vary over time due to random fluctuations but the queuing system is 
stable and it is possible to calculate a time-independent probability of the queue being in a particular state. If 
ρ is greater than or equal to one, however, the queue length will increase with time. 

As a final introductory comment, it is observed that analysis of queuing behaviour may involve either 
deterministic methods, in which the arrival time and service time for each unit in the queue are considered 
to be known with certainty, or probabilistic methods, which are appropriate when either or both of arrival 
times and service times vary stochastically. 
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4.2. Graphical Representation of Queues 

Appreciation of traffic queuing behaviour often is assisted by a graphical representation of the situation under 
consideration. Such graphical representation is particularly well suited to deterministic queuing situations, in 
which both the vehicle arrival and the queue service patterns are known with certainty. As an example, 
consider the situation represented in Figure 4.1. 

Figure 4.1:  Graphical representation of queuing on a signalised intersection approach 

 

Figure 4.1 relates to traffic arriving on an approach to a signalised intersection. The upper graph plots flow 
rates against time and indicates an arrival rate, r, of vehicles at the tail of the queue at the intersection stop line 
that is constant, at q vehicles per unit time. It also shows that the ‘service’ provided to these vehicles (their 
passage through the intersection) can occur at a rate, s, of up to Q vehicles per unit time (the saturation flow 
rate) during the effective green time for this approach, but is zero during the effective red time. 

The lower graph in Figure 4.1 plots cumulative vehicles arriving and departing on this approach against time. 
The solid line representing arrivals has slope q, equal to the arrival rate. The broken line representing vehicle 
departures has three different slopes, each equal to the corresponding rate of departures, as follows: 

• during the effective red time for the approach, the slope is zero, that is, the departures line is horizontal 

• from the beginning of the effective green, for as long as there is a queue at the stop line of the approach, 
the slope of the departures line is Q, the saturation flow rate 

• toward the end of the effective green time, when the queue has dissipated, vehicles pass through the 
intersection at the same rate at which they arrive, so that the slope of the departures line is equal to the 
arrival rate, q. 
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In the lower graph of Figure 4.1 the vertical separation of the arrival and departure lines at any time 
represents the queue length at that time. For example, the maximum queue length, LQ, is the vertical 
distance between the arrival and departure lines at the end of the effective red time. 

Horizontal distances between the arrival and departure lines in the lower graph of Figure 4.1 represent the 
delay experienced by individual vehicles. For example, toward the end of the effective green time, when the 
arrival and departure lines are coincident, arriving vehicles experience no delay. The vehicle that arrives at 
the start of the effective red time experiences the maximum delay before departing at the start of the 
effective green time. The time for which a queue exists at the stop line (the queue duration) can be read from 
the graph as tQ. 

Figure 4.1 presents the simplest possible example, involving a constant arrival rate and service behaviour 
that is repeated exactly in every cycle of the traffic signals, but it illustrates how graphical methods can be 
applied to any deterministic queuing situation. Further development of graphical approaches can be found in 
May (1990). 

4.3. Dynamic and Steady State Queuing 

As noted in Section 4.1, the key characteristics that determine the performance of a queuing system are the 
average arrival rate, r, the average service rate, s, and their ratio, sr=ρ , known as the utilisation factor (or, 
sometimes, the intensity) of the queuing system. 

Typically, instantaneous arrival and service rates vary probabilistically from one moment to the next, but 
each of the average rates of arrival and service may be considered either to remain constant or to vary in 
some way, over an analysis period.  

An example of variation of average rates is that over a two-hour peak period, the arrival rate of vehicles on a 
minor road at an unsignalised intersection is likely to increase from a low, off-peak level, build to a maximum 
peak rate, then steadily decrease toward the end of the peak. Over the same period, a similar pattern of 
growth and decay in the major road traffic would influence the number of acceptable gaps for minor road 
vehicles to enter the intersection, which, in turn, would first decrease the intersection’s effective service rate 
for minor traffic to a minimum value, then steadily increase it again towards the end of the peak. 

The behaviour of a queuing system, as reflected in queue lengths and delays, may vary over an analysis 
period for one of two reasons: 

1. Over the period, there is variation in the average arrival rate and/or the average service rate.  

2. Both rates remain constant over the analysis period but the average arrival rate equals or exceeds the 
average service rate (i.e. the utilisation factor, ρ, is greater than or equal to one). 

Case (1) is what is normally termed dynamic queuing and applies to situations such as the growth and 
decay of traffic over a peak period, an example of which was discussed earlier in this subsection. In such 
situations, the analyst may be interested in the maximum queue lengths and delays that occur, given that 
vehicle arrival rates may approach or even exceed service rates over different parts of the peak. 

Analysis of a dynamic queuing situation may assume deterministic or probabilistic behaviour but, in either 
case, the analysis period is normally divided into a succession of time intervals. Over each interval, the 
average arrival rate and the average service rate (and hence also the utilisation factor) can be considered to 
be constant, though they may vary from interval to interval. The analysis typically assumes a state of the 
system (as indicated by characteristics such as queue length) at the start of the first interval, then takes the 
state at the start of each succeeding interval to be the state at the end of the one before it. 

If the queuing behaviour can be considered to be deterministic, the analysis process is relatively 
straightforward – for example, Figure 4.1 might represent the deterministic analysis of one interval in the 
examination of a dynamic queuing situation over a longer analysis period. 
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If the queuing behaviour is considered probabilistic, the analysis process can be much more complex, 
involving the application of probability theory to the analysis of each interval and producing a distribution of 
possible system states (rather than a single, known state) at each point of change from one interval to the 
next. Fortunately, however, approximation methods, such as the coordinate transformation method of Kimber 
and Hollis (1979), have been developed to allow the estimation of average queue lengths and average 
delays without the need for complex probabilistic calculations. 

Case (2) above is dynamic (time dependent), even though average arrival and service rates are constant 
over time, because a utilisation factor greater than or equal to one results in queue lengths and delays 
growing steadily with time. This situation clearly cannot be sustained over a long period but could apply 
during a limited interval within a peak period. 

Where average arrival and service rates each remain constant over an analysis period and, in addition, the 
utilisation factor is less than one, the queuing situation is said to be steady state. This means that average 
queue lengths and average delays will be constant over time and, in the case of probabilistic behaviour, it will 
be possible to derive probability distributions, which also will not vary with time, for aspects of queuing 
behaviour such as queue lengths and delays. 

For a wide range of traffic engineering applications, analysis of steady state queues with randomly 
distributed arrivals and service times provides suitable guidance for road design and traffic management 
decisions. Section 4.4 addresses this type of analysis. 

4.4. Steady State Queues with Random Arrivals and Service 

4.4.1. Queue Lengths 

This subsection provides the key formulae related to queue lengths in an [M/M/1] queuing system. The 
derivations of these formulae are provided in Commentary 3.  

[see Commentary 3] 

 

The key formulae are as follows. 

The probability of the queue being empty – that is, having no units in service and no units waiting in a queue 
to be serviced – is:  

ρ−= 1P0  4.2 
 

The probability that there are n  units in the system, 0n ≥ , including the unit in service (if any), is: 

n
n )1(P ρρ−=  4.3 

 

The expected number in the system is: 

rs
r

1
)n(E

−
=

ρ−
ρ

=  
4.4 
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The probability of there being more than N items in the system is: 

1N)NnPr( +ρ=>  4.5 

 

The mean queue length, excluding the unit being serviced, is: 

ρ−
ρ−

ρ
=

ρ−
ρ

=
11

)m(E
2

 
4.6 

 

Thus, 

ρ−=ρ= )n(E.)n(E)m(E  4.7 
 

Given that 1<ρ ,  E(m )  is not (as might be expected) equal to E(n) – 1. This is because there is a finite 
probability that the system is empty, in which case n = m = 0. 

Finally, the variance of the number of units in the system is: 

σ2(n) = ∑
∞

=0n

2n Pn – [E(n)]2 = 
2)1( ρ−

ρ  4.8 

 

4.4.2. Waiting Times in Queues 

This subsection provides the key formulae related to delays experienced by units in an [M/M/1] queuing 
system. The derivations of these formulae are provided in Commentary 4. 

[see Commentary 4] 

The time spent by an individual in a queuing situation is made up of the time spent waiting in the queue until 
service is commenced (denoted by ‘w’) and the time spent being served. 

The time spent waiting for service to be commenced will be zero if the queuing system is empty (i.e., no 
queue and no-one being served) when the individual arrives. The probability of a zero waiting time is thus the 
same as the probability of the system being empty, which is given by Equation 4.2. That is: 

ρ−=== 1P)0wPr( 0  4.9 
 

The probability of waiting for service to start for a time that is greater than zero but not greater than a 
particular time, w , is: 

)wwait0Pr( ≤< = w)rs(e −−ρ−ρ  4.10 
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And the probability of waiting for service to start for a time that is greater than w , is: 

)wwaitPr( > = w)rs(e −−ρ  4.11 

 

As would be expected, the probabilities in Equations 4.9, 4.10 and 4.11 sum to unity. 

Over all arrivals, the average, or expected time spent waiting for service to start is: 

E(w) =
rs −

ρ
=

)rs(s
r
−

 
4.12 

 

and the average waiting time over only those arrivals whose wait is non-zero is: 

E(w | w > 0) =
ρ

)w(E =
rs

1
−

 
4.13 

 

Let the total time that any unit spends in the system, including service time, be denoted by τ . Then the 
average, or expected total time spent in the system, over all arrivals, is: 

)(E τ =
rs

1
−

 
4.14 

Comparing this with Equation 4.12, as expected, it is found that: 

)(E τ =
s
1)w(E +  

4.15 

 

4.5. Example Application of Steady State Queuing Theory 

The practical application of the theory outlined above for queues with random arrivals and service times is 
illustrated by the following example.  

At a major sporting venue, patrons arrive in motor vehicles. At one of the entrances to the car parking area 
surrounding the venue, a single line of vehicles approaches the manually operated entry gate, where a cash 
payment is required to gain entry. The process of stopping at the payment point, offering payment, receiving 
change if necessary and departing the payment point averages 12 seconds per vehicle. Vehicles are arriving 
randomly at an average rate of 216 vehicles per hour. Appropriate design of the entry arrangements requires 
knowledge of the following values: 

1. the queue storage length required prior to the payment point, assuming that the length provided must be 
adequate for at least 95% of the time 

2. the proportion of vehicles that will have to wait in a queue before entering the payment point 

3. the average total delay, including time spent in the payment process, to vehicles entering the parking 
area at this gate. 
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Value (1), the required queue storage length, is determined by application of Equation 4.5, as the aim to find 
the smallest value of N for which n, the number of vehicles in the queuing system, satisfies: 

Pr (n > N) = ≤ρ +1N  0.05  

The average arrival rate of vehicles, r, is 216 veh/h and the average service time of 12 s/veh means that the 
average service rate, s, is 300 veh/h. Therefore, by Equation 4.1, ρ = r/s = 0.72 and the required value of N 
is identified as 9, by calculating: 

 Pr (n > 8) = 9)72.0(  = 0.052  

and Pr (n > 9) = 10)72.0(  = 0.037  

Given that n includes the vehicle occupying the payment point, space must be provided for eight vehicles to 
queue before the payment point. If a length of 6 m is allowed for each queued vehicle, a storage length of at 
least 48 m should be provided. 

The following are other results related to queue lengths that may be of interest: 

• The probability that no vehicles are present at any given instant is derived from Equation 4.2 as: 

%28or28.072.011P0 =−=ρ−=   
 

• The probability of there being exactly 6 vehicles present, including that in service is given by Equation 
4.3 as: 

%9.3or0390.0)72.0()72.01()1(P 66
6 =−=ρρ−=   

 

• The mean number of vehicles present, including that in service, is given by Equation 4.4 as: 

57.2
28.0
72.0

1
)n(E ==

ρ−
ρ

=  vehicles 
 

 

• The mean number of vehicles present, excluding that in service, is given by Equation 4.6 as: 

85.1
28.0
72.0

1
)m(E

22

==
ρ−

ρ
=  vehicles 

 

  

which is less than )n(E  by 72.0=ρ  vehicles, in accordance with Equation 4.7. 

• The variance of the mean number of vehicles present, including that in service is given by Equation 4.8 as: 

18.9
28.0
72.0

)1(
)n( 22

2 ==
ρ−
ρ

=σ  (vehicles)2 
 

 

which implies a standard deviation of 3.03 vehicles in the queue length distribution. 
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Value (2), the proportion of vehicles that will have to wait in a queue before entering the payment point, is 
obtained by noting that Equation 4.9 calculates that the probability that any arriving vehicle will not have to 
wait is 1 – ρ. Therefore, the probability that an arriving vehicle will have to wait is ρ, that is, 0.72. Hence 72% 
of vehicles will have to wait before entering the payment point. 

Value (3), the average total delay to entering vehicles, including time spent in the payment process, is given 
by Equation 4.14 as: 

)(E τ  = 
rs

1
−

 
 

 

As observed above, the average service rate, s, is 300 veh/h, while the average arrival rate, r, is 216 veh/h. 
Each of these rates is converted to the units of veh/s by division by 3600. Therefore, the average total delay 
to entering vehicles is: 

rs
1
−

 = 
216300

3600
−

 = 9.42  s/veh 
 

 

This total delay includes the time spent in the payment process, which averages 12 s/veh. Therefore, the 
average waiting time in the queue before entering the payment point (see Equation 4.15) is 42.9 – 12 =  30.9 
s/veh. 

The following are other results related to delays that may be of interest: 

• The probability of a vehicle having to wait more than 20 s before entering the payment point is given by 
Equation 4.11 as: 

Pr w( > %15.45or4515.0e72.0e)20 3600/20)216300(20)rs( ==ρ= −−−−   

 

• Over all arriving vehicles, the average waiting time before entering the payment point is also given by 
Equation 4.12 (consistent with the result obtained above) as: 

9.30
216300

)72.0.(3600
rs

)w(E =
−

=
−
ρ

=  s 
 

 

• Over only those arriving vehicles that cannot immediately enter, the average waiting time before 
entering the payment point is given by Equation 4.13 as: 

w|w(E > 9.42
216300

3600
rs

1)0 =
−

=
−

=  s  
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4.6. Summary of Queuing Theory Formulae 

Table 4.1 summarises the key formulae from elementary queuing theory. 

Table 4.1:  Summary of queuing theory formulae 

Description Eqn no. Equation(1) 

Utilisation factor (ratio of arrival and service rates) 4.1 sr=ρ  

Probability of the system being empty 4.2 P0 = 1 – ρ  

Probability of exactly n units in the system 4.3 Pn = (1 – ρ )  ρ n  

Expected or average number of units in the system, including unit 
in service 4.4 E(n) =

ρ−
ρ

1
=

rs
r
−

 

Probability of more than n units in the system 4.5 Pr (n > N) =  1N+ρ  

Expected or average number of units in the system, excluding unit 
in service 4.6 E(m) =  

ρ−
ρ

1

2 =
ρ−

ρ
1

 – ρ  

Relationship between expected numbers in the system including 
and excluding unit in service 4.7 E(m) =  E(n). ρ =E(n )– ρ  

Variance of expected number in the system, including unit in 
service 4.8 σ2(n) =

2)1( ρ−
ρ  

Probability of a zero waiting time before start of service 4.9 Pr(w =  0) =P0 = 1 – ρ 

Probability of wait greater than zero but not greater than w before 
start of service 4.10 Pr (0 < wait ≤  w ) = w)rs(e −−ρ−ρ  

Probability of wait greater than w before start of service 4.11 Pr(wait > w) = w)rs(e −−ρ  

Expected or average waiting time before start of service 4.12 E(w) =
rs −

ρ =
)rs(s

r
−

 

Expected or average waiting time before start of service for those 
with a non-zero wait 4.13 E(w | w >0) =

ρ
)w(E =

rs
1
−

 

Expected or average total time in the system, including service 
time 4.14 )(E τ =

rs
1
−

 

Relationship between expected total time in the system and 
expected waiting time before start of service 4.15 )(E τ =

s
1)w(E +  

1 r is the average arrival rate and s is the average service rate for units in the queue; their ratio, sr=ρ , is known as 
the utilisation factor for the queue (see also Section 4.1 and Equation 4.1). 
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5. Gap Acceptance 

5.1. Introduction and Definitions 

5.1.1. General Introduction 

In many traffic situations, such as pedestrians or cyclists crossing a road, vehicles overtaking on undivided 
roads or side-road traffic entering major roads at unsignalised intersections, road users must wait for 
acceptable time gaps in the traffic stream to which they must give way before they can proceed. Such 
situations are examined using gap acceptance analysis. 

The magnitude of the time interval considered acceptable to undertake a manoeuvre involving gap 
acceptance depends on the road geometry at the site, the characteristics of the traffic and the nature of the 
manoeuvre itself. Also, in the same gap acceptance situation, different people may be prepared to accept 
gaps of different sizes and even the same person, in the same situation, may be willing to accept smaller or 
larger gaps at different times. Typical observed behaviour for gap acceptance is shown in Figure 5.1. 
However, in the discussion of elementary gap acceptance analysis below, it is assumed that for a given 
manoeuvre in a given situation, there is a single time gap which will be the minimum accepted by all drivers 
at all times. This is called the critical gap and it usually is identified as an average value from observed gap 
acceptances and rejections. For example, Raff and Hart (1950) proposed a method in which a diagram 
similar to Figure 5.1 is plotted from field observations and the critical gap is taken to be the gap ‘T’ 
corresponding to the intersection of the acceptance and rejection curves. 

Figure 5.1:  Typical gap acceptance behaviour 

 

The other important factor in gap acceptance analysis is the headway distribution in the traffic stream which 
has priority, as this determines the frequencies with which gaps of different sizes occur. The discussion in 
Sections 5.2 and 5.3 limits itself to the simplest case of random arrivals, that is, a negative exponential 
headway distribution. Section 5.4 then considers formulae for the case of displaced negative exponential 
headways in the major traffic flow, as an illustration of how other headway distributions can be addressed.  
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5.1.2. Definitions 

Table 5.1 provides definitions of key terms as they are used in the development and application of gap 
acceptance analysis. 

Table 5.1:  Definitions of gap acceptance terms 

Term Definition 
Major and minor traffic 
streams 

In a gap acceptance situation, the traffic stream that has priority is called the major traffic 
stream and the traffic stream that must yield right of way is called the minor traffic stream. 

Unit (in a traffic stream) An element of the traffic stream (vehicle, pedestrian, bicycle, etc.) moving as a single entity. 
Major and minor roads At a road intersection operating by gap acceptance, the road carrying the major traffic 

stream is called the major road and that carrying the minor traffic stream, the minor road. 

Gap acceptance point The point at which a minor traffic stream unit can commence its desired manoeuvre when a 
suitable gap presents itself (e.g. the arrival of a minor road vehicle at the stop line, or a 
pedestrian at the kerb). 

Lag Time interval between the arrival of a minor traffic stream unit at the gap acceptance point 
and the arrival of the next major traffic stream unit. 

Gap Time interval between the arrival of two consecutive major traffic stream vehicles (i.e. a 
major traffic stream headway), commencing after the arrival of a minor traffic stream 
member at the gap acceptance point. 

Critical gap (critical lag) The minimum gap (lag) acceptable to a minor traffic stream unit to perform a given 
manoeuvre in a given gap acceptance situation. (In the discussion in this section, it is 
assumed that the critical lag and the critical gap are of equal size for any given 
situation and are the same for all road users at all times.) 

Follow-up headway The minimum additional duration of a major traffic stream gap (or lag) required to allow one 
additional minor traffic stream unit to follow the unit preceding it into the same manoeuvre, 
utilising the same gap (or lag). 

Anti-block That part of a sufficiently large gap or lag during which there remains a time at least as 
large as the critical gap before the end of the gap or lag, so that a minor traffic stream 
member could commence its desired manoeuvre. 

Block A time interval during which zero, one or more major stream traffic units may pass, while 
there always remains a time less than the critical gap before the arrival of the next major 
traffic stream unit, so that a minor traffic stream member could not commence its desired 
manoeuvre. 

5.2. Principal Gap Acceptance Formulae 

The principal formulae derived from gap acceptance theory for the case of random arrivals in both the major 
and minor traffic streams are presented in the following sections. The detailed derivations of formulae related 
to delays and to absorption capacities are provided in Commentaries 5 and 7 respectively. 

5.2.1. Delays 

The formulae related to delays experienced by minor flow traffic in gap acceptance situations with random arrivals 
in both the major and minor traffic streams are derived in Commentary 5. The key formulae are as follows. 

 [see Commentary 5] 
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The proportion of minor traffic stream units that will be delayed at the gap acceptance point (e.g. at the stop 
line) is: 

  Proportion delayed qTe1 −−=  5.1 

where    

q = the volume of the conflicting major traffic stream, in veh/s   

T = the size of the critical gap (or critical lag), in s/veh  

 

An example, of the practical application of this formula to decisions on the provision of turning lanes at 
unsignalised intersections is discussed in Commentary 6.  

 [see Commentary 6] 

The average delay at the gap acceptance point for all minor traffic stream units (including those that 
experience no delay) is: 

T
q
1

eq
1)0d(d qTav −−=≥ −  s/veh 

5.2 

 

The average delay at the gap acceptance point for those minor traffic stream units that do experience such 
delay is: 

qTqTav e1
T

eq
1)0d(d −− −

−=>  s/veh 
5.3 

 

Tanner (1962) provided an alternative method of calculating average delay that combines both gap 
acceptance and queuing theory in one formula. Details of this method are presented in Commentary 7.  

 [see Commentary 7] 

5.2.2. Absorption Capacities 

An important value for road traffic applications is the theoretical maximum rate at which minor traffic stream 
vehicles can cross or be absorbed into the major traffic stream in a gap acceptance situation. This maximum 
rate is known as the theoretical absorption capacity. 

The formula for theoretical absorption capacity in gap acceptance situations with random arrivals in both the 
major and minor traffic streams is derived in Commentary 8. 

[see Commentary 8] 
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This formula is as follows. 

0qT

qT

e1
eqC −

−

−
=  

5.4 

where   

q and T = defined in Section 5.2.1  

T0 = the follow-up headway, in s/veh  

C = the theoretical absorption capacity in veh/s (multiply by 3600 for veh/h).  
 

It is observed that the absorption capacity C is a theoretical upper limit, which may not be achieved in 
practice. It is common practice in traffic analysis to define a practical absorption capacity as 

C.Cp α=  5.5 

 

where the factor α  is typically taken to be in the range 0.80 to 0.85. 

5.2.3. Multi-lane Flows 

The preceding development of gap acceptance results has implied a single-lane major traffic stream, in 
which minor traffic stream units seek acceptable gaps. If the major traffic stream comprises two or more 
lanes, travelling in the same or opposite directions, minor stream units can proceed with their desired 
manoeuvre only if an acceptable gap occurs simultaneously in each of the major stream lane flows that 
conflicts with that manoeuvre. 

To examine how an analysis can accommodate this situation, consider the existence of two major stream 
lane flows with volumes q1 and q2, each with random arrivals (i.e. negative exponential headway 
distributions) and assume that a critical gap T is sought simultaneously in the two lane flows. The individual 
probabilities of suitable gaps in each flow are: 

Pr )Th( ≥  in 1q  stream 
Tq1e−=  

5.6a 

And 

Pr )Th( ≥  in 2q  stream 
Tq2e−=  

5.6b 

 

If the two lane flows are assumed to be independent of each other, the probability of a suitable headway 
occurring simultaneously in both lanes is simply the product of the two probabilities in Equations 5.6a and 
5.6b, so that: 

Pr( )Th( ≥  in both lanes) 
T)qq(TqTq 2121 ee.e +−−− ==  

5.7 
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This is of the same form as the probabilities in Equations 5.6a and 5.6b, implying that, in gap acceptance 
analysis, a number of independent, separate, major traffic stream flows that conflict with a given minor 
stream manoeuvre can be treated as though they were a single flow with volume equal to the sum of the 
volumes of the individual flows. 

5.3. More Complex Gap Acceptance Situations 

5.3.1. Minor Road Approaches with Mixed Traffic 

Equation 5.4, giving the theoretical absorption capacity in a gap acceptance situation, was derived assuming 
that the minor traffic stream units are homogeneous, in that each faces the same conflicting major traffic 
stream and each seeks to carry out the same manoeuvre, so that the same critical gap and follow-up 
headway applies to all. 

In practice, this would be an unusual situation. From the minor approach to a T-intersection, for example, it is 
likely that some drivers will wish to turn left while others will wish to turn right. If the major road is carrying 
two-way traffic, this means that left turners from the minor road will need to give way only to traffic from their 
right, while right turners must give way to major road traffic in both directions. Not only will the conflicting 
major road volumes differ between left and right turners, but so will the required critical gaps and follow-up 
headways. 

In addition, while an average value of a critical gap is considered adequate to represent the requirements of 
drivers of the same types of vehicles carrying out the same manoeuvre, analyses should recognise that 
average values may be significantly different for different types of vehicles. A large truck, for example, is 
likely to require a much larger gap to make a right turn than would a passenger car in the same situation. 

The accommodation of these differences within the analysis process is achieved by considering the minor 
traffic stream to be divided into a number of homogeneous sub-streams, each consisting of the same type of 
vehicle seeking to carry out the same manoeuvre (e.g. trucks turning right). For each sub-stream, i, Equation 
5.4 can then be used, with values of q, T and T0 appropriate to that sub-stream, to calculate Ci, the 
theoretical absorption capacity that would apply to the approach lane if all its traffic belonged to sub-stream i. 

Now if the total minor traffic stream consists of n such sub-streams and pi is the proportion of the total minor 
traffic volume that is in sub-stream i, i = 1, ..., n, then the theoretical absorption capacity for the whole minor 
traffic stream is: 

∑
=

= n

1i i

i
T

C
p

1C  
5.8 

 

This can be seen by noting that the overall capacity of the minor road approach lane in vehicles per unit time 
is the inverse of the average time interval between successive vehicles entering the intersection from that 
lane. This average time interval is the volume-weighted mean of the sub-stream average entry headways 
1/Ci, i = 1, …, n, that is, the denominator of the right hand side of Equation 5.8. 
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5.3.2. Different Critical Gaps for Different Conflicting Major Flows 

In some cases, a minor traffic stream driver may seek different sized gaps in the different major traffic flows 
that conflict with the desired movement at an intersection. A common case is that of a vehicle turning right 
from a minor road into a major road carrying traffic in both directions. From the stop line, the minor road 
vehicle must effectively cross the traffic flow coming from its right and then join the traffic flow from its left. 
The entering vehicle is clear of the flow from the right as soon as it has crossed that flow, whereas in joining 
the flow from the left, the entering vehicle faces the possibility of a rear-end collision with an approaching 
vehicle, even after the joining manoeuvre is completed. Hence, the driver of the minor road vehicle may seek 
to combine an acceptable gap in the flow from the right with a larger-sized gap in the flow from the left. 

Typically, in such cases, a single follow-up headway size would apply, as this is principally concerned with 
the process of a following vehicle moving up to the point where the driver can assess the major road traffic 
coming from both directions, then decide whether to use the same gap as the vehicle ahead.  

The theoretical absorption capacity for this situation is developed in Commentary 9 in a manner very similar 
to that in Section 5.2.2. 

[see Commentary 9] 

Assume that the total major traffic stream is made up of the traffic flow from the left, with volume qL, and the 
flow from the right, with volume qR. Assume also that a critical gap TL in the major traffic flow from the left is 
the minimum that will allow one minor stream right-turner to cross that stream, and that a critical gap TR in 
the major traffic flow from the right is the minimum that will allow one minor stream right-turner to join that 
stream. Finally, assume that an additional follow-up headway T0 is sufficient to allow one additional minor 
stream vehicle to follow in undertaking the manoeuvre.  

Then, the development in Commentary 9 shows that the theoretical maximum rate at which minor stream 
vehicles can turn right, that is, the theoretical absorption capacity, is:  

0RL

RRLL

T)qq(

)TqTq(
RL

e1
e)qq(C +−

+−

−
+

=  
5.9 

While it is relatively rare for traffic analysts to consider differently sized critical gaps in the major traffic flows 
from opposite directions, this refinement may be appropriate in some circumstances. In any such case, 
Equation 5.9 defines the theoretical absorption capacity that should be used. 

5.4. Formulae for Displaced Negative Exponential Headways in Major Traffic 

Sections 5.2 and 5.3 have restricted their attention to the case of random arrivals – that is, a negative 
exponential distribution of headways – in the major traffic flow. As the type of headway distribution directly 
affects the pattern of acceptable gaps, it is instructive to consider how the key gap acceptance formulae are 
changed if a different type of distribution applies. As an illustration, the case of a displaced negative 
exponential distribution of headways in the major traffic flow is considered in Commentary 10 and the key 
formulae from that analysis are summarised below. 

 [see Commentary 10] 
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The probability density function for headway size, t, for a displaced negative exponential distribution with a 
minimum possible headway β  is: 

β−
β−−

β−
= q1

)t(q

e
q1

q)t(f
 for β≥t  

5.10 

and 

0)t(f =   for β<t  5.11 

The probability of a headway of size t or greater (where β≥t ), in the major traffic stream, is: 

β−
β−−

=≤≤β q1
)t(q

e)htPr(  

5.12 

It follows from Equation 5.12 that, for a critical gap T, the proportion of minor road vehicles that suffer no 
delay at the stop line is: 

Proportion not delayed β−
β−−

= q1
)T(q

e  
5.13 

Conversely, the probability of a major traffic headway of size t or less (where β≥t ) is: 

β−
β−−

−=≤≤β q1
)t(q

e1)thPr(  
5.14 

and, for a critical gap T, the proportion of minor road vehicles that are delayed at the stop line is: 

Proportion delayed β−
β−−

−= q1
)t(q

e1  
5.15 

The average duration of headways greater than or equal to t (where β≥t ) is: 

β−+=≤≤β t
q
1)ht(hav  

5.16 

and the average duration of headways less than or equal to t (where β≥t ) is: 

β−
β−−

β−
β−−

−

β−
−=≤≤β

q1
)t(q

q1
)t(q

av

e1

e)t(
q
1)th(h  

5.17 
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Then the average delay experienced by all minor traffic stream units at the gap acceptance point is: 

)T(
q
1

eq

1)0d(d
q1

)T(qav β−−−=≥
β−
β−−

 
5.18 

The average delay at the gap acceptance point to only those minor traffic stream units that do experience 
such delay is: 

)e1(

)T(

eq

1)0d(d
q1

)T(q
q1

)T(qav
β−
β−−

β−
β−−

−

β−
−=>  

5.19 

Finally, the theoretical absorption capacity for a minor traffic stream requiring a critical gap T and with a 
follow-up headway T0, giving way to a major traffic stream of volume q, with displaced negative exponential 
headways each greater than or equal to β , is: 

β−
−

β−
β−−

−
=

q1
0qT

q1
)T(q

e1

eqC  
5.20 

Note that Equation 5.8 is also valid for displaced negative exponential distributions of major traffic headways. 
Recall that this equation addresses a minor traffic stream consisting of n sub-streams i, n,...,1i = , with pi 
being the proportion of the minor traffic volume in sub-stream i and Ci being the theoretical absorption 
capacity for the approach lane if all its traffic belonged to sub-stream i. For this case, the theoretical 
absorption capacity for the whole minor traffic stream is: 

∑
=

=
n

1i
i

i
T

C
p

1C  
5.8 

For displaced negative exponential major road headways, however, each Ci would be evaluated using 
Equation 5.20. 
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5.5. Example Applications of Gap Acceptance Analysis 

5.5.1. Example 1 – Random Arrivals on Major Road, Mixed Minor Road Traffic 

To illustrate the practical application of elementary gap acceptance analysis, consider the cross-intersection 
shown in Figure 5.2. 

Figure 5.2:  Example cross-intersection 

 

The major road carries traffic flows of 540 veh/h from the left of drivers on the minor approach and 720 veh/h 
from their right, with random arrivals in both cases. At a particular time of day, the traffic on one single-lane 
minor road approach has a volume of 240 veh/h, of which 10% are trucks and the remainder cars. All the 
trucks turn right but, of the cars, 60% cross straight through, 25% turn left and 15% turn right. At this time of 
day, there is negligible traffic on the other minor road approach.  

Required critical gaps and follow-up headways for right turning trucks and for through, left turning and right 
turning cars are as shown in Table 5.2. 

Table 5.2: Critical gaps and follow-up headways 

Minor traffic component Proportion of total volume Critical gap (s/veh) Follow-up headway (s/veh) 
Through cars 0.540 TL = TR = 5.0 2.5 
Left turning cars 0.225 TR = 4.0 2.0 
Right turning cars 0.135 TL = 6.0, TR = 5.0 2.5 
Right turning trucks 0.100 TL = 8.0, TR = 7.0 3.5 

It is desired to estimate the practical capacity of the intersection for this approach and the average delay at 
the stop line for through cars. 

The first step in estimating capacity is to identify the theoretical absorption capacity that would apply for this 
approach if its traffic was comprised entirely of vehicles in each of the ‘Minor traffic component’ categories in 
Table 5.2. 

  
q3 = 240 veh/h 

q1 = 720 veh/h 

q2 = 540 veh/h 
T, To see 
Table 5.2 
 

q2 = 540 veh/h 

q3 = 240 veh/h 

q1 = 720 veh/h 
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For the first two categories, only one critical gap applies and Equation 5.4 can be used. For through cars, the 
opposing volume q is the sum of the volumes for major road traffic from the left and the right (540 + 720 = 
1,260 veh/h or 0.35 veh/s), while for left turning cars, q consists only of the major road traffic from the right 
(720 veh/h = 0.20 veh/s). Hence, for through cars, 

h/veh5.375s/veh10430.0
e1
e35.0

e1
eqC )5.2x35.0(

)5x35.0(

qT

qT

0
==

−
=

−
= −

−

−

−

 

 

and for left-turning cars, 

h/veh3.981s/veh27259.0
e1
e2.0

e1
eqC )2x2.0(

)4x2.0(

qT

qT

0
==

−
=

−
=

−

−

−

−

 

 

For the last two categories, different critical gaps apply for the two major traffic flow directions and Equation 
5.9 must be applied. Hence, for right-turning cars, 

h/veh2.323s/veh08977.0
e1

e35.0
e1

e)qq(C )5.2x35.0(

)5x2.06x15.0(

T)qq(
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−
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+−
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and for right-turning trucks, 

h/veh5.132s/veh03681.0
e1

e35.0
e1

e)qq(C )5.3x35.0(

)7x2.08x15.0(

T)qq(

)TqTq(
RL

0RL

RRLL

==
−
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The overall theoretical absorption capacity for the mixed traffic can then be determined using Equation 5.8, 
as follows: 

h/veh1.352

5.132
1.0

2.323
135.0

3.981
225.0
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The practical absorption capacity might be estimated as 80% of this figure, that is, 282 veh/h. 

The average delay at the stop line for through cars is estimated by application of Equation 5.3, that is: 

veh/s58.85
35.0
1

e35.0
1T

q
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5.5.2. Example 2 – Displaced Negative Exponential Headways on Major Road 

Assume that at the intersection shown in Figure 5.2, all minor road traffic consists of through cars with gap 
acceptance characteristics as shown for that category in Table 5.2. For this situation, compare the average 
delays at the stop line and the theoretical absorption capacities that would apply if the major road volumes 
were as shown and the major road headway distributions were: 

(a) Negative exponential. 
(b) Displaced negative exponential, with minimum headway 1.5 s/veh. 

For a negative exponential headway distribution on the major road 

The average delay at the stop line over all through cars was calculated in Example 1, using Equation 5.2, 
with s/veh35.0h/veh1260q ==  and veh/s0.5T = , as 8.58 s/veh. 

The average delay to only those through cars that are delayed is given by Equation 5.3, with the same 
values of q and T , as: 

39.10
)e1(

0.5
e35.0
1)0d(d 75.175.1av =

−
−=>

−−
 s/veh 

 

The theoretical absorption capacity for through cars also was calculated in Example 1, using Equation 5.4, 
with s/veh35.0h/veh1260q == , veh/s0.5T =  and veh/s5.2T0 = , as 0.1043 veh/s or 375.5 
veh/h.  

For a displaced negative exponential headway distribution with minimum headway 1.5 s/veh 

The average delay at the stop line over all through cars is given by Equation 5.18, with 
s/veh35.0h/veh1260q == , veh/s0.5T =  and veh/s5.1=β , as: 

31.31)5.10.5(
35.0
1

e35.0

1)0d(d
)5.1x35.01(
)5.10.5(35.0av =−−−=≥

−
−−

 

s/veh 

The average delay to only those through cars that are delayed is given by Equation 5.19, with the same 
values of q, T and β , as: 

88.33
)e1(

)5.10.5(

e35.0

1)0d(d
475.0

)5.3(35.0
475.0

)5.3(35.0av =
−

−
−=> −−

 s/veh 
 

The theoretical absorption capacity for through cars is obtained using Equation 5.20, with 
s/veh35.0h/veh1260q == , veh/s5.1=β , veh/s0.5T =  and veh/s5.2T0 = , as: 

03155.0
e1

e35.0C
475.0

)5.2(35.0

475.0
)5.3(35.0

=
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= −
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 veh/s 6.113=  veh/h 
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The significant differences in delays and absorption capacities between the two cases are explained by the 
fact that with a negative exponential distribution, 17.4% of major road headways are larger than the critical 
gap, whereas with a displaced negative exponential distribution, this proportion is reduced to only 7.6%. 

5.5.3. Example 3 – Staged Crossing 

At an unsignalised intersection where the major road is divided, minor road traffic may be able to cross or 
turn right in two stages, crossing the first carriageway and then sheltering in the median gap before crossing 
or turning into the second carriageway. Figure 5.3 illustrates such a situation. 

Figure 5.3:  Staged crossing 

 

At the unsignalised intersection shown in Figure 5.3, minor road vehicles must give way to traffic on each 
carriageway of the divided major road. The minor road traffic consists of passenger cars, so that the 7 m 
median width on the major road is enough to shelter one minor road vehicle waiting to cross the second 
carriageway. Traffic on the major road arrives randomly from both directions and has the volumes shown. 
Critical gaps and follow-up headways required by northbound traffic to cross each carriageway of the major 
road are also as shown. The task is to estimate the capacity of the intersection to accommodate northbound 
through traffic. 

Start by considering the process involved in northbound traffic crossing the intersection. Because a vehicle 
waiting at the first stop line (A) cannot depart if the median storage space is occupied, the crossing process 
for any such vehicle consists of three components: 

1. at stop line A, noting the departure of the preceding vehicle from stop line B 

2. moving from stop line A to stop line B 

3. waiting at stop line B for an opportunity to cross the second carriageway. 

 

1152 veh/h 
T  = 4 s/veh 
T0 = 2 s/veh 

T  = 4 s/veh 
T0 = 2 s/veh 
 

756 veh/h 

N 

7 m 

8 m 

8 m 

A 

B 
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If there was no impediment to a northbound vehicle continuing on its way once it had crossed the first 
carriageway, the average delay at stop line A would be given by Equation 5.2, with 
q = 756 veh/h = 0.210 veh/s and T = 40 s/veh, as dav = 2.27 s/veh. Therefore, once the median storage 
space is empty, a vehicle at stop line A can expect to wait 2.27 s before being able to depart. 

The travel time between stop lines A and B is estimated as the time to cover a distance of 15 m at an 
average speed of (say) 12 km/h or 3.33 m/s, that is, 4.5 s. 

This means that when a vehicle departs stop line B, it will take 2.27 + 4.5 = 6.77 s, on average, for the 
following vehicle to reach stop line B. This 6.77 s/veh can therefore be considered the effective follow-up 
headway (in lieu of the 2.0 s/veh shown in Figure 5.3) for northbound traffic crossing the second 
carriageway. 

The theoretical capacity of the intersection for northbound through traffic can therefore be estimated from 
Equation 5.4 with q = 1152 veh/h = 0.320 veh/s, T = 40 s/veh and T0 = 6.77 s/veh, giving a capacity of 
0.1005 veh/s or 362 veh/h. The practical capacity may be estimated as 80 to 85% of this value, that is, 290 
to 308 veh/h. 

The average delay at stop line B is given by Equation 5.2, with q = 1152 veh/h = 0.320 veh/s and 
T = 40 s/veh, as dav = 4.1145 s/veh. If the average time of 6.77 s/veh for a following vehicle to reach that 
stop line is added to this, a total of 10.88 s/veh is obtained. The inverse of this provides another estimate of 
the rate at which northbound vehicles depart from stop line B, this being 0.0919 veh/s or 331 veh/h. This 
value is close to the theoretical capacity evaluated in the preceding paragraph but is less, and not as good 
an estimate, because it makes no allowance for multiple vehicles crossing the second carriageway within the 
same gap, which may occur for gaps greater than 10.77 s/veh in the eastbound major road flow. 

It is instructive to compare the above result with the capacity that would apply if the major road was 
undivided, so that crossing minor road vehicles would have to seek simultaneous gaps of sufficient size in 
both directions of major road traffic.  

Given a major road width of 16 m (the sum of the two carriageway widths) and a total priority flow of 756 + 
1152 = 1908 veh/h = 0.530 veh/s, a critical gap of 6 s/veh and a follow-up headway of 3 s/veh would be 
appropriate for the crossing manoeuvre. Substituting these values into Equation 5.4 produces a theoretical 
absorption capacity of 0.0277 veh/s or 98 veh/h, only 27% of the capacity with a staged crossing. 
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5.6. Summary of Basic Gap Acceptance Formulae 

Table 5.3 summarises the key formulae from elementary gap acceptance theory, for both negative 
exponential and displaced negative exponential headway distributions in the major traffic stream. 

Table 5.3:  Summary of elementary gap acceptance formulae 

Description Eqn no. Equation 
For negative exponential distribution of major flow headways: 
Proportion of minor traffic stream units delayed at stop 
line or (for pedestrians crossing) kerb 5.1 Proportion delayed qTe1 −−=  

Average delay at stop line or kerb over all minor stream 
units 5.2 T

q
1

eq
1)0d(d qTav −−=≥
−  

Average delay at stop line or kerb for those minor stream 
units that are delayed 5.3 qTqTav e1

T
eq
1)0d(d

−− −
−=>  

Theoretical absorption capacity for basic gap acceptance 
situation 5.4 0qT

qT

e1
eqC −

−

−
=  

Theoretical absorption capacity for minor traffic 
manoeuvre requiring different critical gaps in major flows 
from left and right 

5.9 0T)RqLq(
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e1
e)qq(C +−
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+
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For displaced negative exponential distribution of major flow headways: 
Proportion of minor traffic stream units delayed at stop 
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6. Combined Gap Acceptance and Queueing Theory 

6.1. Absorption Capacity as a Queuing Service Rate 

Section 5.3.1 has considered the absorption capacity of an intersection approach lane where intersection 
entry is by gap acceptance and where the approach lane traffic is made up of component sub-streams that 
differ in their gap acceptance behaviour, due to differences in their combinations of vehicle type and desired 
manoeuvre at entry.  

Equation 5.8 evaluates the overall absorption capacity, CT, for the approach lane in terms of pi, the 
proportion of the total minor traffic volume that is in sub-stream i, and Ci, the theoretical absorption capacity 
that would apply to the approach lane if all its traffic belonged to sub-stream i, i = 1, … , n, as: 

∑
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= n

1i i

i
T

C
p

1C  

5.8 

The capacity CT is an appropriate queuing service rate, s, to use in the calculation of values associated with 
queue length (Equations 4.3 to 4.7 inclusive) or with delay in reaching the head of the queue (Equations 4.10 
to 4.14 inclusive). When considering vehicles in a particular sub-stream, however, different queuing service 
rates are appropriate for different components of delay. 

Consider, for example, the total delay (from joining the tail of the queue to entering the intersection) for a 
vehicle in sub-stream i. This must be calculated using Equation 4.15, the right hand side of which has two 
components – the delay before reaching the head of the queue E(w), which can be calculated from Equation 
4.12, and the delay in service, 1/s.  

It is apparent that, in evaluating E(w), it is important to recognise that the delay experienced by any vehicle in 
progressing through the queue is governed by the behaviour of the queue as a whole, so that both the arrival 
rate, r, and the service rate, s, must take the values applicable to the whole minor traffic stream. For s, this 
value is CT. When a vehicle in sub-stream i reaches the head of the queue, however, its in-service delay 
depends on its own, particular gap acceptance requirements and the appropriate service rate, s, is therefore 
Ci. The end result is that the total delay for a vehicle in sub-stream i must be calculated as: 

iTT

i C
1

)rC(C
r)v(E +
−

=  

6.1 

It is important to note that the in-service or head-of-queue delay for this situation must be calculated as the 
inverse of the queuing service rate (i.e. as 1/s or 1/Ci), not as the stop line delay given by Equation 5.8. This 
is because the process of ‘service’ for any vehicle commences with the departure of the vehicle immediately 
ahead and includes movement up to the stop line, as well as waiting (if required) at the stop line for a 
suitable gap in the major flow. 
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6.2. Gap Acceptance with Multiple Levels of Priority 

The consideration of elementary gap acceptance in Section 5 assumed a single major traffic stream 
(perhaps consisting of traffic from more than one direction) with priority over a single minor traffic stream. In 
practice, however, it is common to see multiple levels of priority, that is, situations in which a minor traffic 
stream must give way to a higher priority stream which, in turn, must give way to another stream of still 
higher priority. An example is illustrated by Figure 6.1, in which movement 1 has priority over both 
movements 2 and 3, and movement 2 has priority over movement 3.  

Figure 6.1:  Example T-intersection 

 

The example situation in Figure 6.1, with random arrivals assumed for both streams 1 and 2, is used in the 
following to illustrate how queuing and gap acceptance theory can be combined to develop a means of 
evaluating absorption capacities for lower priority movements. The method presented was taken from 
Bennett (1996). 

The theoretical absorption capacity for the second-priority movement 2 in Figure 6.1 is simply calculated 
from Equation 5.14 as: 
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6.2 

where   

q1 = the volume of traffic stream 1  

T2 and T0(2) = the critical gap and follow-up headway, respectively, for stream 2 vehicles 
crossing traffic stream 1 

 

 

To calculate the theoretical absorption capacity for the third-priority movement 3, which must give way to 
both movements 1 and 2, observe that, for a stream 3 vehicle to be able to depart from the stop line, the 
following three conditions must apply simultaneously: 

1. There is an adequate time gap before the arrival of the next stream 1 vehicle. 

2. There is no queue of stream 2 vehicles waiting to turn into the minor road. 

3. There is an adequate time gap before the arrival of the next stream 2 vehicle. 

 

1 

2 

3 
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For random arrivals, the probabilities of these conditions applying at any time are the following: 

Pr(Condition 1 applies) )3(T1qe −=
 

6.3 

Pr(Condition 2 applies) 
2

2
)2(0 C

q1P −==  
6.4 

Pr(Condition 3 applies) )3(T2qe −=  6.5 

where   

q2 = the volume of traffic stream 2  

T(3) = the critical gap for stream 3 vehicles entering the intersection  

P0(2)  the probability of the stream 2 queue being empty.  
 

Assuming independence of the above three conditions, the probability that all will apply simultaneously is the 
product of the individual probabilities in Equations 6.3 to 6.5, that is: 
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6.6 

This probability is the same as the probability of a headway greater than or equal to T(3) in a traffic stream 
with random arrival of vehicles and volume qa, where: 
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6.7 

The situation can therefore be considered equivalent to a simple gap acceptance situation in which a minor 
traffic stream with volume q3, critical gap T(3) and follow-up headway T0(3) must give way to a single major 
traffic stream of volume qa, as defined by Equation 6.7. Thus, for example, the theoretical absorption 
capacity for stream 3 would be calculated as: 
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6.8 

The validity of the results obtained in the above example analysis has yet to be proven and this would 
probably be best accomplished by simulation of the assumed situation, over a range of traffic volumes and 
gap acceptance parameters. It is presented here as an illustration of how the combination of gap acceptance 
and queuing theory may be used to address more complex problems. 
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7. Vehicle Interactions in Moving Traffic 

7.1. Overview 

This section explores some of the theory developed to model interactions between vehicles within a moving 
stream of traffic. The nature of these interactions and the relative importance of each type depend most 
strongly on the characteristics of the facility on which the traffic is operating and on the traffic density, but 
other factors, such as the mix of vehicle types, also have an influence. 

For example, on a rural, two-lane, two-way road where overtaking opportunities are limited, modelling of the 
formation of vehicle bunches and of the overtaking behaviour of drivers may be of primary concern. In 
contrast, on a multi-lane, urban freeway, theory related to flow breakdown and the propagation of shock 
waves through the traffic stream is likely to be most relevant to flow management. 

The discussions in the following sections are presented as overviews of the general nature of different 
aspects of the theory, rather than as comprehensive coverage. For the reader who wishes to investigate any 
aspect more deeply, references are provided. 

7.2. Car Following 

Models describing how one vehicle follows another were first developed in the 1950s with the pioneering 
work of Reuschel (1950a and b) and Pipes (1953). This inspired a considerable volume of further work that 
continued into the 1960s in Japan (Kometani and Sasaki 1961) and in the United States (Chandler et al. 
1958; Forbes et al. 1958; Forbes 1963; Herman et al. 1959; Herman and Potts1961; Herman and Rothery 
1962, 1965) and established the basis for gradual continued development since. 

7.2.1. Pipes’ Model 

The earliest theories are illustrated by the model developed by Pipes (1953), which simply stated that the 
minimum safe distance gap between a following vehicle and the vehicle ahead of it should be a constant 
multiple of the speed of the following vehicle. For ease of presentation of this model, the vehicle ahead is 
denoted as vehicle n and the one following as vehicle n+1. 

As the minimum safe spacing, smin, is the sum of the minimum safe distance gap plus the length, Ln, of the 
vehicle ahead, this led to the model: 

n1nmin L)]t(v[Ks += +

 
7.1 

where   

K = a constant (in time units)  

vi(t) = the speed of vehicle i  at time t   
 

The value of the constant K was derived from the common road safety advice to ‘leave a clear gap of one car 
length between your vehicle and the vehicle ahead for each 10 miles per hour of your speed’. In metric units, 
an effective car length of 6 m and the equivalence of 10 miles per hour to 16 km/h or 4.44 m/s leads to a 
value K = 1.35 s and the model can be stated as: 

6)]t(v[35.1s 1nmin += +

 
7.2 
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In practice, the value of the constant K was determined by field observation of minimum spacings and it was 
found that reasonable agreement between predicted and observed spacings was obtained for speeds 
between 20 and 60 km/h, using a value of K = 1.36 s in the model. 

7.2.2. Forbes’ Model 

Forbes et al. (1958) produced exactly the same form of model as did Pipes by considering that the time gap 
between the front of the following vehicle and the rear of the vehicle in front should never be less than the 
following driver’s reaction time, t∆ . This meant that the minimum (time) headway, hmin, should be equal to 
the reaction time plus the time taken for the vehicle in front to travel its own length, that is: 

)t(v
Lth
n

n
min +∆=

 

7.3 

Given that the general relationship between headway, spacing and speed is s = h.v (see Section 2.2.1), this 
can be written as: 

nnmin L)t(v.ts +∆=
 

7.4 

which is the same as Pipes’ model, with the constant K  equal to the reaction time t∆ . 

7.2.3. General Motors’ Models 

The researchers associated with General Motors in the 1950s and 1960s produced a series of models 
(Chandler et al. 1958; Herman et al. 1959; Herman and Potts1961; Herman and Rothery 1962, 1965), all of 
which had the behavioural form: 

response f= (sensitivity, stimulus)
 

7.5 

Over a number of years, a series of five models was developed, in each of which the response was 
considered to be the acceleration (deceleration if negative) of the following vehicle and the stimulus the 
relative speed between the leading and following vehicles. The differences between the models lay in the 
form of the sensitivity component, which was gradually developed to better explain and represent the results 
of concurrent field observations. All of the models included a reaction time t∆ , by assuming that the stimulus 
(relative speed) at time t led to a response (acceleration) that occurred at time tt ∆+ . 

The first model proposed a constant sensitivity term which was simply applied as a multiplicative factor to the 
relative speed, that is: 

)]t(v)t(v[.)tt(a 1nn11n ++ −α=∆+
 

7.6 

where   

ai(t) = the acceleration of vehicle i at time t  

α1 = the constant sensitivity factor for Model 1  

vi(t) = the speed of vehicle i at time t  
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The second and third models recognised the influence on sensitivity of the spacing between the vehicles – 
the second by using separate sensitivity factors for small and large spacings, which proved impractical, and 
the third by use of a sensitivity inversely proportional to the spacing, which produced the formulation: 
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7.7 

where   

α3 = the constant factor for Model 3  

xi(t) = the position of (the front of) vehicle i  at time t   

and all other terms are as previously defined.  
 

The fourth model recognised that, just as sensitivity increased with decreasing spacing between the leading 
and following vehicles, it also increased with increasing speed. It therefore proposed a sensitivity factor 
directly proportional to the speed of the following vehicle and inversely proportional to the spacing, that is: 
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7.8 

where   

α4 = the constant factor for Model 4  

and all other terms are as previously defined.  
 

Finally, a fifth, generalised model (of which Models 1 to 4 are special cases) was proposed. In this fifth 
model, the speed in the numerator and the spacing in the denominator of the sensitivity term were raised to 
exponents m  and l  respectively, giving: 
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7.9 

where   

 m and I are (logically positive) exponents of speed and spacing, respectively, in 
the sensitivity term and all other terms are as previously defined. 
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Finally, it is noted that the independently proposed, macroscopic, Greenberg model of traffic flow, linking 
speed and density (Gazis et al. 1961) can be derived directly from the third General Motors microscopic 
model of car following. The Greenberg model can be stated as: 


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=
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7.10 

where   

v = speed of the traffic stream at density k  

v0 = ‘optimum speed’ of the traffic stream, i.e. speed at maximum volume  

kj = ‘jam density’ of the traffic stream, i.e. density when vehicles are bumper to 
bumper and stopped 

 

k = density of the traffic stream at speed v  
 

The derivation is not shown here but can be seen in May (1990), pp. 172–3. 

Since the 1960s, there has been a steady further development of car following theory, examples of the 
outputs from which can be seen in Ahn et al. (2004), Aron (1988), Aycin and Benekohal (1998), Brackstone 
and McDonald (1999), Chakroborty and Kikuchi (1999), Dijker et al. (1998), Henn (1997), Hidas (1997), Lay 
(1998), Mehmood et al. (2003), Newell (2002), Ossen et al. (2006), Panwai and Dia (2005), Wang et al. 
(2005), and a wide range of other publications. 

7.3. Traffic Bunches and Overtaking 

7.3.1. General 

While the terms ‘bunch’ and ‘platoon’, referring to a group of vehicles in a traffic stream, often are used 
interchangeably, their most common usage in Australasia (and that employed in this Guide) distinguishes 
between them as follows. 

A bunch is a single-lane group of vehicles, associated with uninterrupted flow conditions and arising because 
of different desired travel speeds of different drivers and limitations on overtaking opportunities. Generally, a 
bunch consists of a lead vehicle, travelling at its own desired speed, closely followed by none, one or more 
other vehicles with equal or higher desired speeds. Under this definition, a bunch may consist of a single 
vehicle. The formation of a bunch of two or more vehicles is due to causes entirely internal to the traffic 
stream. The most common manifestation of traffic bunches is in traffic flow on two-lane two-way rural 
highways.  

A platoon, on the other hand, may be a single-lane or multi-lane group of vehicles and is associated with 
interrupted flow conditions. A platoon is formed when traffic is stopped by an element external to the traffic 
stream, such as a red aspect at a signalised intersection. When the traffic is able to again proceed (the 
signal turns green) it moves away as a group or cluster of vehicles that is called a platoon. 

This section is concerned with traffic bunches and the closely associated activity of overtaking, particularly 
where the overtaking manoeuvre makes use of the lane in which the opposing direction of traffic has priority. 
Traffic platoons are addressed in Section 7.4. 



Guide to Traffic Management Part 2: Traffic Theory 

 
 

 
 

Austroads 2015 | page 54 
 

7.3.2. Traffic Bunches 

The formation of traffic bunches has been addressed briefly in Section 3.3.4, which deals with composite 
models of headway distributions in a traffic stream. At that point, the above distinction between bunches and 
platoons was not made, as composite headway distribution models may be applied to both situations, but it 
is now appropriate to focus attention on bunches as defined above. 

Section 3.3.4 noted that a composite headway distribution model may be defined by specifying a sufficient 
number of items from a list of characteristics of the traffic stream. One such sufficient set of characteristics is: 

• the distribution of bunch sizes 

• the distribution of headways for restrained vehicles 

• the distribution of inter-bunch headways (i.e. the difference between the times at which the lead vehicles 
of two consecutive bunches pass a given point). 

Bunch sizes 

If the distribution of bunch sizes is known, the mean bunch size, m , also is known and it is possible to 
calculate θ , the proportion of vehicles in the traffic stream which are restrained (in the sense of being 
following vehicles in a bunch of size two or more) as: 

m
1m −

=θ
 

7.11 

This is readily seen by considering a time period during which the number of vehicles passing a given point 
in the direction of interest is N. Given an average bunch size of m, these vehicles would be in N/m bunches, 
each consisting of exactly one free flowing vehicle, either alone or closely followed by other vehicles in a 
multi-vehicle bunch. Thus, there would be N/m free flowing vehicles and, hence, N – N/m vehicles following 
in bunches. The proportion of vehicles following in bunches would therefore be 

m
1m

m
11

N
mNN −

=−=
−

=θ . 

A number of discrete probability distributions have been employed to represent the distribution of bunch 
sizes. Among these are the geometric distribution (Walpole et al. 2011), the Borel-Tanner distribution 
(Tanner 1961) and the two-parameter and one-parameter Miller distributions (Miller 1961). 

The geometric distribution was introduced as a discrete distribution relevant to traffic theory in Section 3.2.3. 
In the context of its application to the distribution of bunch sizes in a traffic stream, it predicts the probability 
of observing a bunch of size n as: 

)1()nPr( 1n θ−θ= −

 

7.12 

Where θ is the proportion of vehicles in the traffic stream that are following in bunches, as previously defined. 
Given that θ can also be considered as the probability that any one vehicle in the traffic stream is a 
‘restrained’ or ‘following’ vehicle, the right hand side of Equation 7.12 is seen to be the product of the 
probability that the lead vehicle of the observed bunch will be followed, first, by n–1 restrained vehicles 
(making up a bunch of size n), then by a free flowing vehicle (the lead vehicle of the next bunch). 
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The mean of the geometric distribution gives the average or expected bunch size as: 

θ−
=

1
1m

 

7.13 

which is seen to be consistent with Equation 7.11. 

The Borel-Tanner distribution (Tanner 1961) has already been discussed in Section 3.3.4 in the context of its 
application to bunch size distributions and is not considered further here. 

Miller (1961) originally proposed a two-parameter model of bunch size distributions in which the probability of 
observing a bunch of exactly n vehicles is: 

)!1nba(!b
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7.14 

where a and b are the two parameters, having values that provide the best fit of Equation 7.14 to observed 
data, while being related to the mean bunch size, m, by: 
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The probability of observing a single-vehicle bunch is then given by: 
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7.16 

Miller (1961) then noted that the value of b  often was small and proposed a one-parameter form of the 
distribution: 
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7.17 

with the parameter a  fitted such that the mean bunch size, m , is given by: 

a
1am +

=
 

7.18 

 

Headway distributions within bunches 

Given the relatively close following behind the lead vehicle in a multi-vehicle bunch and the fact that a 
minimum feasible headway must apply, a within-bunch headway distribution that provides for a small 
variance about a mean headway is generally appropriate. For some analyses, it may be sufficiently accurate 
to assume the extreme case of a uniform distribution, that is, equality of all within-bunch headways.  
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A more realistic representation would be provided by some other type of distribution (normal, log-normal or 
gamma, for example) with small variance and with limits that recognise both the minimum headway feasible 
for car-following and the maximum headway for which a vehicle can be considered to be following within a 
bunch rather than free flowing. However, the use of such a more realistic representation should be justified 
by the level of accuracy required by the particular application. 

Headway distributions between bunches 

Given that the headway for any vehicle is taken to be its time separation from the vehicle immediately ahead 
of it (see the start of Section 3.3) and that a single free flowing vehicle is taken to be a bunch of size 1 
(Section 3.3.4), the headway for any free flowing vehicle is its time separation from the last (possibly the 
only) vehicle in the bunch immediately ahead. This same time separation is defined as the inter-bunch 
headway, so that the distribution of headways for free flowing vehicles is the same characteristic as the 
distribution of headways between bunches. 

Because these vehicles are free flowing, a headway distribution based on random arrivals (e.g. negative 
exponential, displaced negative exponential) is usually appropriate. For example, the discussion of the 
double exponential distribution in Section 3.3.4 notes that it utilises a standard negative exponential 
distribution of headways for free flowing vehicles (combining them with a displaced negative exponential 
distribution of headways for vehicles following in bunches). 

7.3.3. Overtaking on Two-lane, Two-way Roads 

The process of overtaking on a two-lane, two-way road, in which the overtaking vehicle utilises the opposing 
traffic lane, is one of the most complex tasks undertaken by drivers but is central to the operational efficiency 
of such roads. There have therefore been substantial quantities of both theoretical and empirical research on 
overtaking. 

For traffic travelling in one direction on a two-lane, two-way road, the demand for overtaking generally arises 
because of the different desired travel speeds of different vehicles, so that vehicles catch up with others 
whose desired speeds are less and must then either reduce their speed to that of the vehicle ahead or 
overtake it. If this is the sole generator of overtaking demand, then the demand for overtaking would be the 
rate at which faster vehicles catch up with slower ones. Wardrop (1952) showed that if each driver has a 
constant desired speed and if desired speeds are normally distributed across drivers, this ‘catch-up rate’ is 
given by: 
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7.19 

where   

D0 = overtaking demand (overtakings/km/h)   

q = traffic flow in the direction of travel (veh/h)  

vm = mean desired speed for traffic in this direction (km/h)  

σ = standard deviation of distribution of desired speeds (km/h)  
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More recent research (Bar-Gera and Shinar 2005) indicates that the assumption that each driver has a fixed 
desired speed is an over-simplification. Rather, it appears that each driver’s desired speed spans a range 
and the driver considers any vehicle ahead, travelling within that speed range, as a potential interference. 
This conclusion was drawn partly from the fact that some drivers were observed to substantially increase 
their own speed in order to overtake a vehicle that had been travelling a little faster than themselves. 
Nevertheless, Equation 7.19 is still considered a reasonable estimate of ‘latent’ demand for overtaking. 

The level of overtaking demand in Equation 7.19 could be realised in practice only if drivers were always free 
to overtake whenever they wished. This is not the case on a two-lane, two-way road unless there is no traffic 
at all in the opposing direction and every driver is always able to be certain of that being so. Typically, 
however, there will be opposing traffic and a driver will be able to overtake only when: 

• There is a sufficiently large gap in the opposing flow. 

• The driving situation (particularly sight distance) is such that the driver wishing to overtake can be 
confident that there is a sufficiently large gap. 

The supply of opportunities for overtaking can thus be viewed as an application of gap acceptance 
analogous to the unsignalised intersection applications discussed in Sections 5 and 6. In both, drivers are 
seeking suitable gaps in a conflicting traffic stream but, in the overtaking situation, those waiting for gaps, 
and the queues that form as a result, are moving. Also, there is evidence that overtaking drivers judge the 
size of available gaps by distance, rather than by their time duration (McLean 1989). 

For traffic under steady state conditions in one direction on a length of two-lane, two-way road, equilibrium 
develops between demand for and supply of overtaking opportunities. Where overtaking opportunities are 
limited, faster vehicles tend to catch up to and queue behind slower vehicles. With increased queuing 
(bunching), the variance of speeds in the stream is reduced and, consequently, so is the catch-up rate and 
the demand for overtaking. Conversely, where there are more opportunities for overtaking, its occurrence will 
reduce the bunching, hence increasing the variance of speeds, the catch-up rate and the demand for 
overtaking. Consideration of this equilibrium led to a number of bunching/overtaking models (Kallberg 1981; 
Miller 1961, 1962, 1963) which are discussed in McLean (1989). 

A second equilibrium exists between the bunching/overtaking occurring in two interacting streams of 
opposing traffic. Gipps (1974 and 1976) proposed a two-stream equilibrium model for the situation in which 
there were no external constraints (such as limited sight distance) on overtaking by vehicles in either of the 
opposing streams. He argued that the extent of bunching (bunch sizes, gaps between bunches) in the 
primary stream depends on the overtaking opportunities available, which depend on the gaps, and hence the 
bunching, in the opposing stream; further, a reciprocal relationship exists between opposing stream bunching 
and primary stream bunching. Building on the formulations of Miller (1961, 1962, 1963), Gipps (1974 and 
1976) developed functions relating the mean bunch sizes in the two directions and demonstrated that more 
than one equilibrium state could exist for the same traffic conditions.  

7.3.4. Bunching and Overtaking as Level of Service Measures 

Hoban (1984a and b) suggested that the extent of traffic bunching occurring on a two-lane, two-way road is 
perhaps the best measure of level of service for the road, arguing that it is: 

• Easy to measure and meaningful to drivers, engineers and road planners 

• Applicable to both long and short road sections and takes account of upstream and downstream effects 
of particular road features 

• Sensitive to the demand for overtaking as well as its supply. 

Hoban (1984c) used traffic simulation to derive bunching criteria (proportion of vehicles following in bunches, 
proportion of journey time spent following and equivalent mean bunch size) that corresponded with the limiting 
traffic conditions for levels of service A to E, as defined by the 1965 Highway Capacity Manual (HRB) 1965. 
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Morrall and Werner (1990) noted that the 1985 Highway Capacity Manual (Transportation Research Board 
(TRB) 1985) had responded to recommendations such as Hoban’s by introducing average percentage of 
time that vehicles are delayed while following in platoons (‘bunches’ in Australasian usage) because of their 
inability to pass (‘overtake’ in Australasian usage). Morrall and Werner (1990) used the TRARR simulation 
model (Hoban et al. 1985) to investigate the effects of road geometry and traffic characteristics on overtaking 
and per cent following. They then compared various level of service measures and procedures, including 
those in the 1965 and 1985 Highway Capacity Manuals, the per cent following count generated by simulation 
and the overtaking ratio (defined as the ratio of the achieved number of overtakings on a two-lane, two-way 
highway to the total number possible if the road had the same alignment but included continuous passing 
lanes). On the basis of their findings, they proposed that the overtaking ratio should be introduced as an 
additional measure of level of service to supplement those in the Highway Capacity Manual (TRB 1985). 

Today, the level of service measures for two-lane, two-way roads included in the Highway Capacity Manual 
(TRB 2010) comprise per cent time spent following and average travel speed. 

7.4. Platoon Dispersion 

7.4.1. General 

As noted in Section 7.3.1, a platoon, as used by Australasian traffic professionals, is a group of vehicles 
resulting from an interruption to traffic flow, such as the signal aspect turning red at a signalised intersection 
or crossing. When the green signal aspect appears, the vehicles that had been stopped move off in a group 
that we call a platoon.  

If all the vehicles travelled at the same speed, the platoon would stay together as a tight group, as it moved 
along the road. In practice, however, there will be a distribution of speeds and the platoon will spread out, 
with faster vehicles moving further and further ahead of the centre of the group and slower vehicles dropping 
further and further behind. This spreading process is known as platoon dispersion and it is of interest 
because of its effect on efficiency of traffic flow, particularly in relation to coordination of traffic signals along 
a route or across a network. If dispersion did not occur and if downstream traffic signals were appropriately 
set, it would be possible for a much greater proportion of the platoon to move through the downstream 
signals without stopping than would be the case with the platoon dispersed. 

Because of its importance to traffic management and control, there has been considerable research into 
platoon dispersion – see, for example, the historical review in Denney (1989). These studies have identified 
three principal ways of representing the dispersion process: in terms of kinematic wave theory, using 
diffusion theory and through recurrence modelling. These different approaches are discussed briefly in the 
following three sections. 

7.4.2. Kinematic Wave Theory 

Seddon (1971) extensively analysed platoon dispersion in terms of kinematic wave theory (Lighthill and 
Witham 1955), but found this approach unworkable because of its computational complexity and its inability 
to predict platoon behaviour once the platoon disperses to the point that vehicles are not interacting. 
Because of these reasons, Denney (1989) noted that kinematice wave theory for platoon dispersion has not 
been used in practical applications.  

As mentioned, Leo and Pretty (1992) was successful in modelling the dispersion of platoons between to 
traffic signals using finite element method at a small discrete levels of time and space (Section 2.4).  
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7.4.3. Diffusion Theory 

Pacey (1956) presented a simple, purely kinematic model of platoon dispersion, which considered the 
situation of normally distributed speeds in the traffic stream and argued that, in this case, the dispersion of a 
traffic platoon could be described by the dispersion in speeds. In developing the theory, Pacey also made 
the following simplifying (and somewhat unrealistic) assumptions: 

• each vehicle travels at a constant speed 

• vehicle speed is independent of position in the platoon 

• there are no impediments to any one vehicle overtaking another. 

In spite of these questionable assumptions, Pacey (1956) showed that the theory was quite successful in 
predicting flow profiles.  

A presentation and extension of the theory by Grace and Potts (1964) starts with Pacey’s assumptions, 
including that of normally distributed speeds, with mean m and standard deviation σ. It is further assumed 
that, at the start of the signal green phase (time t = 0), the traffic density k(x,0) is known, where x represents 
the position along the road from the signal stop line. The authors then extend the theory by noting that, with 
a change of variables, the traffic density at location x and time t can be obtained as the solution to the 
standard one-dimensional diffusion equation: 
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with the diffusion constant α  being equal to mσ , the coefficient of variation of the distribution of vehicle 
speeds in the platoon. 

Seddon (1972a) presents the diffusion theory in terms of the traffic flows at the stop line and at a 
downstream location (where the level of dispersion is of interest) and of the vehicle travel times between 
those two points. Seddon notes that, if the distribution of vehicle speeds is assumed to be normal, it is 
possible to derive the distribution of travel times ττ d)(g  between the two points. If the flow past the first 
point in the time interval t to t+dt is q1(t)dt then, of these vehicles, there will be ττ ddt)(g)t(q1

 that will pass 
the downstream point at time τ+= tT . Overall, therefore, the flow past the downstream point in the time 
interval T to T+dT will be: 

∫ −= dTdt)tT(g)t(qdT)T(q 12

 
7.21 

the integration being over all values of t for which q1(t) exceeds zero. 

In practical applications a more convenient expression of this dispersion relationship may be the discrete 
form: 

∑ −=
i

12 )ij(g)i(q)j(q
 

7.22 

Where i and j are counts of discrete intervals of time at the first and second points respectively. In words, this 
expression says that the flow in the jth interval at the second point is the sum, over all values of i, of the flow 
in the ith interval at the first point multiplied by the probability of a travel time between the two points of j–i 
intervals. 
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Seddon (1972a) fitted the model to field data by selecting values of m and σ , the mean and standard 
deviation of platoon speeds to derive the travel time function )(g τ  giving the best fit between observed and 
predicted arrival patter ns at the downstream point. He found the model then produced good predictions of 
arrival patterns at other downstream points. Denney (1989) and the references already noted in this section 
provide further detail for the interested reader. 

7.4.4. Recurrence Model 

Using data collected by others (Hillier and Rothery 1967), Robertson (1969) developed an empirical platoon 
dispersion model using a discrete iterative technique. This recurrence model has received wide application 
in the various versions of the TRANSYT network optimisation package, which takes account of platoon 
dispersion in selecting signal offsets to minimise total delay over a road network. 

The recurrence model considers traffic flows over a series of equal, small time intervals at two locations on 
the road, x1 (say, the stop line at a signalised intersection) and x2 (a point some distance downstream from x1 
where the level of dispersion is of interest), relating flows at the two locations in different time intervals. 
Specifically, the recurrence relationship can be written as: 

)1ti(q.)F1()i(q.F)ti(q 212 −+−+=+  7.23 

where   

q1(n) = the flow at location x1 in time interval n   

q2(n) = the flow at location x2 in time interval n  

i = a time interval counter  

t = T⋅β  where =β an empirical parameter < 1 

 and T = average undelayed travel time (cruise time) 
1x  to 

2x (in time intervals) 

  with T⋅β  representing the travel time of the head of a platoon 

F = smoothing factor =
t1

1
α+

 

where =α an empirical parameter 

Robertson (1969) fitted this model to field data finding that values of 5.0=α  and 8.0=β  gave the best 
predictions of flows at downstream points. 

Seddon (1972b) shows that Equation 7.23 can be written equivalently as: 

∑
−

=

−−−=
tj

1i

itj
12 )F1(F)i(q)j(q  

7.24 

where j is a count of time intervals at the second point and j=i+t ; all other variables are as previously 
defined.  
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Seddon (1972b) points out the similarity between Equation 7.24 and Pacey’s diffusion model as expressed in 
Equation 7.22, the only difference being the replacement of the travel time function )ij(g −  with the 
probability function itj)F1(F −−− , which will be recognised as a geometric distribution commonly used to 
represent the number of failures in a two-outcome trial before the first success. Here it is the probability that 
a vehicle passing the first point in th ith interval will pass the second point in the jth interval. Seddon (1972b) 
found good fits of the recurrence model to field data, but with values of the calibration parameters a little 
different from those suggested by Robertson (1969). 

7.5. Congestion Management Theory 

7.5.1. General 

The purpose of this section is to overview aspects of traffic theory that form the basis of flow management on 
road facilities. This area of traffic management has been given increased attention by transport professionals 
since the 1980s, particularly in relation to freeways and other high standard facilities (Akcelik et al. 1999; 
Brilon 2000; May 1990). 

Much of the theory underlying these developing approaches to flow management is not new but draws on 
the established relationships of traffic flow. However, using different ways of viewing key traffic 
characteristics, particularly density, researchers and traffic managers have been able to gain new insights 
into freeway performance and guidance on how that performance can be improved. 

7.5.2. Flow Monitoring and Management 

Density and occupancy 

The three primary variables used to describe traffic flow are identified in Section 2 as volume (q), density (k) 
and speed (v), which, in aggregate terms, are related by q = k.v (Equation 2.3), in which the appropriate v is 
the space mean speed. 

It has long been recognised that density is a fundamental measure of the level of service (LOS) being 
provided on a road at any particular time (e.g. HRB 1965) but, until relatively recently, the difficulties of field 
measurement of density led to the use of other LOS measures such as volume/capacity ratio. Historically, 
density (the number of vehicles in a unit length of lane or road) has been measured in the field by one of four 
methods, as follows: 

• Photographic techniques measure density directly using photographs along a length of road, taken 
either from a fixed, high vantage point or from an aircraft. From the photographs, the number of vehicles 
in each length of road or lane that is of interest are counted and the density is obtained by dividing by 
the known length of road or lane. 

• Input-output counts enable the number of vehicles in a road section to be updated from an initial, 
known number by adding counts of vehicles entering the section and subtracting counts of vehicles 
leaving. The passage detectors must be able to ensure accurate counts at both ends of the section and 
a means of regularly re-initialising the number of vehicles within the section is desirable. Such re-
initialisation is difficult except in the situation of road sections with no intermediate entry or exit points 
and no lane changing, in which case the number of vehicles in each lane of the section can be obtained 
as the count of vehicles entering between the entry and exit of a specifically identified vehicle. 

• Speed-flow calculations use point measurements of vehicles passing and individual vehicle speeds to 
calculate volume and space mean speed (the latter by means of Equation 2.5), then apply Equation 2.3 
to determine density. 
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• Occupancy measurement became a viable means of determining density with the introduction of 
accurate presence detectors. Occupancy (at a given location over a (usually fairly short) period of time) 
is defined as the proportion of time for which the presence of a vehicle over the detector is recorded. 
Given that presence is recorded whenever any part of a vehicle length is over any part of the effective 
length of the detector, occupancy is related to the average spacing of vehicles by the relationship: 

s
LLOcc DV +

=  
7.25 

where   

Occ = occupancy, expressed as a proportion (veh.s/s)  

VL  = average length of a vehicle (m)  

LD = effective length of detector (m)  

s = average spacing of vehicles as defined in Section 2.1.5 (m/veh)  
 

Then, given that density, k, is inversely related to spacing (see Equation 2.2) but is usually expressed in the 
units of veh/km rather than veh/m, density is obtained as: 

DVDV LL
)Occ(%.10

LL
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1000k
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+
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Where k is density in veh/km, %Occ is occupancy expressed as a percentage, and all other variables are as 
previously defined. 

Traffic density and per cent occupancy ranges corresponding to different levels of service are shown in 
Table 7.1 which has been adapted from May (1990) and Transportation Research Board (2010). 

Table 7.1:  Density and occupancy level of service indicators 

Density 
pc/km/lane(1) 

Per cent 
occupancy(2) 

Level of 
service 

Flow conditions 

0–7 0–5 A Free flow operations 

Uncongested 
flow conditions 

7–11 5–7 B Reasonably free flow operations 
11–16 7–11 C Stable operations 
16–22 11–14 D Bordering on unstable operations 

22–28 14–19 E Extremely unstable flow operations Near capacity 
flow conditions 

28–54 19–36 
F 

Forced or breakdown operations Congested 
flow conditions > 54 > 36 Incident situation operations 

1 Density in passenger car equivalents per kilometre per lane. 
2 Assuming 7.6LL DV =+ m. 
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Density contour mapping 

With the advent of reliable and accurate presence detectors, traffic densities derived from measured lane 
occupancies have become key indicators of traffic performance. Freeway managers, in particular, are using 
changes in density values over time at key locations on their facilities to monitor performance and provide 
guidance on interventions to improve performance. 

The plotting of contours (lines of equal value) of density on a location-time plane has evolved as the most 
useful presentation of density data (and, similarly, data on other characteristics such as flow, speed, moving 
queues and gap availability) for the purposes of flow management.  

A hypothetical example is shown in Figure 7.1, in which the contours separate areas of uncongested flow (k 
< 22 pc/km/lane, no shading), near capacity flow (22 < k < 28, light shading) and congested flow (k > 28, 
heavy shading), the values being consistent with Table 7.1. Some comments on this example are made 
following a brief introduction to shock waves in traffic. 

Figure 7.1:  Traffic density contours in the space-time domain 

 

Shock waves in traffic 

Shock waves are defined as ‘boundary conditions in the space-time domain that denote a discontinuity in 
flow-density conditions’ (May 1990). For flow management purposes, the boundary of most interest is that 
marking the discontinuity between uncongested and congested flow, which might correspond with a density 
of 28 pc/km/lane.  

A shock wave is not simply a contour corresponding to a particular density value, however – it is an 
indication of a sudden change in flow conditions which may propagate through time and space. A simple 
example of a shock wave is free-flowing traffic forced to join the tail of a queue stopped by a red traffic 
signal. The discontinuity that occurs is the change from free-flowing traffic with medium density and speed to 
the jam conditions of a stationary queue – maximum density and zero speed. As time increases with the 
signal remaining red, the propagation of the wave is backwards in space (i.e. opposite to the travel direction) 
because, as the queue length increases, the point at which the change of flow conditions occurs moves 
further and further back. Such a shock wave would be classified as ‘backward forming’ – backward because 
it moves backward in space over time and forming because a greater extent of congestion is forming. 
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A change from red to green of the traffic signal in the preceding paragraph would result in a ‘backward 
recovery’ shock wave as vehicles further and further back in the queue successively start to move – 
recovery because the change is a decrease in the extent of the congestion and backward because the 
point at which the change is occurring progressively moves backward relative to the direction of travel. 

As well as backward, shock waves may be forward or stationary, these designations indicating forward 
movement and lack of movement, respectively, of the shock wave over time. ‘Forward forming’ shock waves 
are relatively rare but ‘forward recovery’ shock waves occur frequently, for example, where a bottleneck has 
caused the formation of a slowly moving queue but, as the peak period ends and upstream demand 
decreases to less than the bottleneck capacity, the tail of the queue moves forward and the extent of 
congestion decreases. 

Stationary shock waves are classified as either frontal, because they are at the front of the congested length 
of road (so that the change of flow conditions is from congested upstream of the shock wave location to 
uncongested downstream) or rear, because they are at the rear of the congestion (so that the reverse is the 
case). As a stationary shock wave does not move, it results in no change in the extent of congestion. A 
frontal stationary shock wave might occur, for example, at the downstream end of a bottleneck, while a rear 
stationary shock wave may be located upstream of the bottleneck when demand decreases to become equal 
to the bottleneck capacity, so that the length of the queue to enter the bottleneck does not change. 

Flow management applications 

The above discussion of shock waves is introductory only but, with a thorough knowledge of the topic, 
density contour maps can be interpreted to provide valuable insights into traffic performance, including 
identification of the real locations of bottlenecks, assessment of the consequences of congestion (in terms of 
delays and economic consequences) and the ability to distinguish between recurring and incident-generated 
congestion. While the process of interpretation is complex enough to require considerable experience, a little 
of what is involved can be appreciated by returning to the density contour map in Figure 7.1. 

Considering the 28k =  contour, the boundary between uncongested and congested flow, the map first 
indicates the presence of a bottleneck a little beyond the 3 km location, which first causes a flow breakdown 
at approximately 4:45 pm, setting up a frontal stationary shockwave. The second effect of this bottleneck is a 
backward forming shockwave which takes approximately 75 minutes (from 4:45 to 6:00 pm) to move back 
1.7 km to around the 1.3 km location. The velocity of this shock wave is thus -1.4 km/h (negative because it 
is moving backward). At 5:10 pm a bottleneck at location 3.3 km receives sufficient traffic to cause a second 
frontal stationary shock wave, which replaces that at 3.0 km and lasts at that location through until 6:30 pm. 
At around 6:00 pm, the approaching end of the peak results in reduction in upstream demand and the 
congestion begins to decrease, as indicated by the forward recovery shock wave from 1.3 km at 6:00 pm to 
2.6 km at around 6:35 pm (shock wave velocity +2.2 km/h). The remainder of the peak congestion is reduced 
between 6:25 and 6:35 pm by the backward recovery shock wave moving back 0.7 km from the 3.3 km 
location to the 2.6 km location. The congestion ends at 6:35 pm. 

Through similar interpretations of data, including that collected over longer periods of days or weeks, freeway 
managers are able to optimise the operation of ramp metering, assess the effects of lane additions and 
generally guide the design of interventions to improve flow performance. For further information, the reader is 
directed to the references in Section 7.5.1 and reports from Australasian road agencies actively involved in 
the area. 

The following sections provide further discussions on some previously published traffic models that deal with 
the characteristics of flow breakdowns. These traffic state models classify traffic flow into different state regimes 
and provide different ways to illustrate congested freeway flow patterns (Austroads 2008; Han & Luk 2008). 
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7.5.3. Two Phase HCM Model 

A conventional understanding of the formation of congested flow conditions is that a queue would form 
upstream of a bottleneck due to conditions such as lane drop, merge area, weaving section or upgrade. The 
trailing edge of the queue moves upstream at a rate depending on demand and capacity conditions. When 
the tail of this queue reaches any upstream location, freeway operation moves from the uncongested regime 
to the congested regime, at approximately the same flow. 

The HCM 2010 (TRB 2010) and the 1986 and 2000 editions have advocated the need to consider maximum 
flows or capacities of a freeway segment in two regimes or phases. Two maximum flow rates can be 
identified as follows: 

• Maximum flow when flow is stable – this is the maximum flow before the formation of a queue at a 
bottleneck, i.e. the maximum pre-queue flow. 

• Maximum queue discharge flow – this is the maximum flow after a queue is formed and is associated 
with a speed drop, and has been found to be less than the pre-queue maximum flow rate. A possible 
reason for this decrease in flow rate is driver caution – departures from a freeway queue require more 
care because drivers may not be aware of conditions downstream. This is in contrast to a start-up queue 
at a signalised approach where maximum flow is achieved even though different vehicles have different 
acceleration rates. 

There have been debates on where the maximum flows should be measured. Hall and Agyemang-Duah 
(1991) argued that the two phases are observable only if detectors are located at some distance upstream of 
a bottleneck, and that there is only one congested regime if they are at a bottleneck.  

In a study of a bottleneck on a four-lane freeway near San Diego (Interstate 8), Banks (1990) measured the 
above two maximum flow rates. The frequency distribution polygons of the counts on the fast lane are shown 
in Figure 7.2. The results clearly showed that there is a statistically significant difference between the two 
flow rates.  

Figure 7.2:  Frequency distribution polygons of vehicle counts on the fast lane 

 

Source: Banks (1990). 
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Hall, Hurdle and Banks (1992) finalised a speed-flow diagram as shown in Figure 7.3. The diagram 
overcomes the following issues: 

• The parabolic shape in uncongested flow is no longer used; speed remains quite similar until the degree 
of saturation or volume/capacity ratio reaches 0.75. 

• The queue discharge regime is included in the speed-flow diagram. 

• Two maximum flow rates are used, one for the stable, pre-queue regime and another for the queue 
discharge rate (which is lower than the maximum pre-queue flow rate). 

As mentioned, ramp metering is useful for reducing on-ramp flow so that the mainline demand is maintained 
at or just below capacity and therefore reduces the occurrences of flow breakdowns and also improves traffic 
conditions at the merge point. 

Hall, Hurdle and Banks (1992) also suggested that much more research is needed in understanding freeway 
congested flow. Figure 7.4 shows the speed-flow relationship for a freeway in the HCM (2010). Note that the 
queue discharge area covers a range of data. The queue discharge area may be represented by a vertical 
segment, as shown in Figure 7.3, recognising that the vertical segment is not really a speed-flow function, 
but is plotted on the graph without the location axis. 

Figure 7.3:  Generalised speed flow relation for a typical freeway segment 

 

Source: Austroads (2008). 

Figure 7.4:  Speed-flow relationship for freeway in HCM (2010) 

 

Source: Adapted from TRB (2010). 
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Figure 7.5 shows an example of a speed-flow relationship based on empirical data for each lane across a 
three-lane carriageway in Melbourne (VicRoads 2013). The flow breakdown at this location was initiated by 
an uncontrolled flow at an entry ramp merge. In the context of level of service (LOS), the flow breakdown 
generally occurs within LOS E where unstable flow leads to problems in sustaining the free flowing 
conditions. The changes to speed and flow rate are accompanied by increases in motorway lane 
occupancies (density values within LOS F). 

Figure 7.5:  An example of speed-flow diagram from a Melbourne freeway 

 

Source: VicRoads (2013). 

7.5.4. Three Phase Model  

Three traffic phases 

Kerner and Rehborn (1996) first proposed the classification of freeway traffic flow into three phases based on 
time series of flow, occupancy, and average speed. Kerner (2004) later completed the three-phase traffic 
theory based on earlier work. In the three-phase traffic theory, there are two traffic phases in congested 
traffic, synchronised flow and wide moving jam, defined as follows:  

• A synchronised flow is a congested traffic state and the downstream front of this flow is often fixed at a 
freeway bottleneck. Within the downstream front of synchronised flow, vehicles accelerate from lower 
speeds in synchronised flow to higher speeds in free-flow. 

• A wide moving jam is a moving jam that maintains the mean velocity of the downstream jam front, even 
when the jam propagates through any other traffic states or freeway bottlenecks.  

The three traffic phases are therefore free-flow (F), synchronised flow (S) and wide moving jam (J). Figure 
7.6 illustrates the traffic phase definition of synchronised flow and wide moving jams (Kerner 2004). The data 
in Figure 7.6 came from a section of Autobahn 5-South freeway near Frankfurt, Germany. There are three 
bottlenecks labelled as B1, B2 and B3. Average 1 min speed data in space and time is shown in (a). A two-
dimensional graph of the same data with the free-flow phase in white, the synchronised flow phase in grey, 
and the wide moving jam phase in black is shown in (b). 
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Figure 7.6:  Synchronised flow and wide moving jams in congested traffic 

 
 

Source: Kerner (2004). 

The three-phase traffic theory explains the complexity of traffic phenomena based on phase transitions 
among these three traffic phases. For example, transitions can be spontaneous F→S or induced F→S. In 
Kerner’s three-phase theory, a transition from F→S is a flow breakdown (Kerner 2004; Kerner et. al. 2005).  

An induced F→S transition is caused by a short-term external disturbance in traffic flow. This traffic flow can 
be related to the propagation of a moving spatio-temporal congested pattern that initially occurs at a different 
freeway location. Figure 7.6 (a) shows an example of induced F→S transition – the wide moving jam 
propagated through the bottleneck location B2 and induced the synchronised flow at this bottleneck. Figure 
7.7 shows an example of spontaneous F→S transition. This breakdown phenomenon or F→S transition is 
caused by an internal local disturbance (e.g. an on-ramp bottleneck) in traffic flow. There are no external 
disturbances in traffic flow responsible for this phase transition. 

Figure 7.7:  An example of spontaneous F→S transition 

  

Source: Kerner (2004). 

The F→S transition or breakdown phenomenon usually occurs at the same freeway bottleneck. These 
bottlenecks are called effectual bottlenecks in Kerner’s model. Examples of effectual bottlenecks are the 
bottleneck in Figure 7.7 and B1, B2, and B3 in Figure 7.6. 
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Based on different combinations of traffic phases, different congested patterns are formed. Kerner studied 
traffic flow on the A5 freeway over a large number of days and found that the spatio-temporal structure of 
congestion patterns exhibits predictable features. These features can be used to forecast freeway 
congestion and develop effective freeway control tools. 

Lindgren (2005) also investigated a 30 km section of A5 freeway north of Frankfurt and found some similar 
traffic patterns that match Kerner’s three traffic phases. In Lindgren’s A5 freeway study, traffic flows were 
observed in which speeds across all lanes were notably lower than in free-flowing conditions, and they were 
more consistent across all lanes. This phenomenon was observed in congested flows upstream of the 
bottleneck following activation. This pattern matched Kerner’s synchronised flow phase. Lindgren also 
revealed several occurrences of congested patterns in which a relatively short duration traffic disturbance 
travelled several kilometres upstream. This pattern matched Kerner’s wide moving jam. Lindgren’s study 
represented some of the first apparent independent validation of Kerner’s traffic phase findings (Lindgren 
2005; Lindgren et. al. 2006).  

Empirical probabilistic nature of traffic breakdown 

Kerner (2004 and 2007) found that the traffic breakdown exhibits a probabilistic nature. At a given flow rate, 
traffic breakdown at a freeway bottleneck can occur but it may not necessarily occur.  

The probability for an F→S transition, i.e. a traffic breakdown, (PFS(B)) at a bottleneck is an increasing 
function of the flow downstream of the bottleneck qsum as shown in Figure 7.8. qsum is the sum of the flow on 
the on-ramp qon and mainline upstream flow qin (Figure 7.9). There is a threshold flow rate qth(B) and a critical 
flow rate qmax(B). Regardless of free-flow control application there is a range when qth(B) ≤ qsum ≤ qmax(B) within 
which traffic flow breakdowns can occur with probability PFS(B) > 0. 

Figure 7.8: Probability of traffic breakdown 

 

Source: Kerner (2007). 
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Figure 7.9: Traffic flow downstream of a bottleneck (qsum) 

 

Source: Kerner (2007). 

A flow breakdown, if due to a speed disturbance in free flow in the neighbourhood of a bottleneck, occurs 
only when the speed decreases below a critical speed. The critical speed depends on the qsum. The smaller 
the qsum , the lower the critical speed required for breakdown. The probability for traffic breakdown PFS(B) is 
the probability of random critical speed disturbances appearing at the bottleneck. Disturbances with small 
amplitudes in free flow at the bottleneck do not lead to breakdown. However, if a random short-term speed 
disturbance in free flow at the bottleneck exceeds some critical values, traffic breakdown occurs.  

Lindgren (2005) investigated the same section of A5 freeway traffic flows as Kerner did. Lindgren reviewed 
Kerner’s work on three-phase models and found that Kerner’s time series plots cannot show excess 
accumulation (queuing) between measurement locations resulting from bottleneck activation. Lindgren 
applied a cumulative count curves technique that was used to complement the three-phase models to 
observe transitions between free flows to queued conditions and identify time-dependent traffic features of 
bottlenecks. Figure 7.10 shows the bottlenecks in time and space identified by Lindgren. 

Lindgren (2005) investigated 81 bottleneck activations and deactivations, where queued traffic prevailed 
upstream of each bottleneck and unqueued traffic was present downstream. Although Kerner suggested that 
traffic congestion can form and traffic can self-organise without a physical bottleneck, all 81 bottlenecks 
diagnosed in Lindgren’s study were activated at a predictable location (e.g. merge, diverge, vertical curves) 
and appeared to be linked to particular triggers rather than to have occurred spontaneously.  

Figure 7.10:  A5 speed contour diagram in Lindgren’s study – 1 min data 

 

Source: Lindgren (2005). 
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7.5.5. Other Models of Flow Breakdowns 

Stochastic concept of traffic capacity 

Brilon, Geistefeldt and Regler (2005) studied 5 min data on the freeways around the city of Cologne, 
Germany and found that the concept of stochastic capacities seem to be more realistic and more useful than 
traditional use of single value capacity. Lorenz and Elefteriadou (2001) and Brilon and Geistefeldt (2009) 
also proposed that the capacity of a motorway facility is not so much deterministic, but rather a random 
variable and that breakdown probability can be related to traffic flow as shown in Figure 7.11. Their empirical 
analysis shows that the distribution of freeway capacity fits very well into a Weibull distribution (Figure 7.11). 
The overload probability (traffic breakdown) for a single bottleneck is equal to the capacity distribution 
function as shown in Figure 7.11. Examples of flow values and the likely flow breakdown probability at those 
flows are plotted on the graph. This finding is consistent with Kerner’s analysis of the probabilistic nature of 
traffic breakdown (Section 7.5.4). 

While it is likely that the shape of the probability curve may change for different motorways and traffic flow 
mix with heavy vehicles, the research can provide an indication of likely problems at different flow values. For 
example, at a flow of approximately 2100 veh/h/lane the curve indicates an 85% probability of flow 
breakdown. Similar characteristics and probabilities have been demonstrated by Main Roads Western 
Australia on the Mitchell Freeway in Perth. 

The concept of randomness permits the demonstration of the capacity-reducing effect of wet road surfaces 
(–11%) and the capacity-increasing effect of traffic-adaptive variable speed limits.  

Figure 7.11:  Probability of flow breakdown 

 

Source: Based on Brilon, Geistefeldt and Regler (2005). 

The study by Brilon, Geistefeldt and Regler (2005) also showed that three traffic flow states exist in a 
freeway: fluent traffic state, congested traffic state and a transient state that occurs in each breakdown and 
recovery of traffic flow. These three states seem to match Kerner’s three-phase theory but the definitions of 
the phases are slightly different.  

The stochastic concept of capacity reveals that the optimum degree of saturation for a German freeway is 
around 90%. If the degree of saturation increases further, the risk of a breakdown becomes too high, so that 
the efficiency of freeway operation must be expected to be lower than a saturation of 90%.  
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Six traffic state model 

Schonhof and Helbing (2007) investigated 1 min data for the same section on the A5 freeway as Kerner and 
Lindgren. They interpreted traffic flow by six states: free traffic (FT), pinned localised cluster (PLC), moving 
localised cluster (MLC), stop-and-go waves (SGW), oscillating congested traffic (OCT) and homogeneous 
congested traffic (HCT). The most frequent states at the investigated freeway were the PLC and OCT states. 
HCT occurs mainly after serious accidents with lane closures or during public holidays. An adaptive 
smoothing method was used to identify the different traffic states. This method interpolates and smoothes 
traffic data from successive freeway sections, taking into account the propagation speeds of perturbations in 
free and congested traffic.  

Schonhof and Helbing (2007) found that the congested traffic states identified by this model were in good 
agreement with prediction of some second-order macroscopic traffic models and some microscopic car-
following models.  

Readers should refer to Austroads (2008), Austroads (2009a) and Han and Luk (2008) for further information 
regarding these flow breakdown models and their applications in the identification and analysis of freeway 
flow breakdowns.  
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8. Principles Underlying Managed Motorways  

In recent years, road agencies have focussed on the management of motorways under congested flow 
conditions using e.g. ramp meterings and variable speed limit (VSL) signs. Austroads (2014a) and VicRoads 
(2013) described the general principles underlying the use of these managed motorway tools.  

8.1. Causes and Impacts of Flow Breakdowns 

Traffic flow breakdown occurs within the section of a motorway where the flow first exceeds capacity and can 
be caused by recurrent or non-recurrent factors. 

8.1.1. Bottlenecks 

A bottleneck is a fixed location where the capacity is lower than the upstream capacity. Bottlenecks affect 
traffic flow capacity and have the potential to cause recurrent flow breakdown typically including: 

• merging traffic from an entry ramp 

• merging traffic at a lane drop, e.g. narrowing from four to three lanes 

• high lane changing manoeuvres over a short distance – typically due to weaving prior to a high flow exit 
or prior to an increase in the number of lanes 

• traffic queues at an exit ramp extending back to block the left lane of the motorway or causing traffic to 
slow down prior to exiting 

• mainline locations where geometric features cause vehicles to slow down e.g. a steep upgrade, a tight 
radius curve, width restriction (real or perceived) or sight distance constraint. 

• a lower speed limit 

• speed differential between vehicles due to: 

– presence of trucks 

– random actions such as sudden braking following a driver’s inattention 

• short periods of very high density flow that are not sustainable. Examples of spikes in traffic flow are 
illustrated in Figure 8.1. 

Figure 8.1:  Example of high volume and density spikes in the traffic flow 

 

Source: VicRoads (2013). 
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‘Critical’ bottlenecks are the locations along a section of motorway where recurrent flow breakdown usually 
occurs first, i.e. the location that first reaches capacity. These are typically at a lane drop or at an entry ramp 
merge with a combination of high mainline flow and a high entry flow. As flow breakdown at a bottleneck 
relates to an operational deficiency, recurring congestion is generally predictable and can be managed with 
appropriate control of flow. In some instances a solution may exist to correct a deficiency. 

A ‘potential’ or ‘latent’ bottleneck becomes an ‘active’ bottleneck when flow breakdown occurs as a result of 
the flow exceeding capacity, i.e. the congestion is not the result of a shockwave that arrives from a 
downstream location. 

It needs to be recognised that correction of a capacity deficiency at one location may move the point of 
critical capacity upstream or downstream to the next point of limiting capacity. As each point of capacity 
limitation is removed, the section of motorway should become more tolerant of flow variations up to the 
capacity limit along its length. 

8.1.2. Non-recurrent Causes of Flow Breakdown 

Non-recurrent traffic flow breakdown can also occur at any location on a motorway due to: 

• an accident, object or other incident on the carriageway 

• roadworks, including maintenance works 

• driver behaviour that slows down the traffic flow such as: 

– ‘rubber necking’ to look at an incident 

– police presence or enforcement activity. 

8.1.3. Effects of Flow Breakdown 

Motorway traffic flow breakdown usually creates significant reductions in throughput and vehicle speeds and 
may result in substantial increases in travel time. During the period of flow breakdown, lane occupancy 
(density) rises as a result of reduced headway on the motorway. The reduction in throughput, which may 
average about 10–15%, represents under-utilisation of a high value facility and lost productivity. An example 
from a Melbourne freeway is shown in Figure 8.2. 

Figure 8.2:  Typical impacts of flow breakdown on traffic throughput and speed 

 

Source: VicRoads (2013). 
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After traffic flow breakdown occurs at a bottleneck, the congestion will result in slow speed travel at that 
location and loss of throughput, i.e. capacity flow is only reached for a relatively short time. The symptoms 
may be localised and remain at or near the bottleneck, or more usually, the congestion creates a moving 
queue with a shockwave that travels upstream from the initial location of flow breakdown, to affect the 
performance of an extended length of the motorway. 

Figure 8.3 shows an example of freeway speed contour in the time and distance dimension. The flow 
breakdown and the resulting shockwave propagation upstream (i.e. backward shockwave) are shown by 
orange and red patches in the diagram. Typical characteristics within the shockwave area are: 

• The lane occupancy will be high. 

• Flow rates will typically be 10% to 20% lower than the maximum flow at the downstream bottleneck prior 
to breakdown. 

• The speed will be low and variable as the shockwave moves upstream, i.e. stop-and-go waves are 
formed within the congested area. 

Figure 8.3:  Flow breakdown at bottlenecks and shockwave propagation 

 

Source: VicRoads (2013). 

As the congestion moves in shockwaves from the point of initial flow breakdown, i.e. a critical bottleneck, the 
congestion at a particular upstream location may be the result of a bottleneck that is remote from the area 
under investigation. When investigating the cause of congestion at a particular point or when trying to identify 
the critical bottleneck along a length of motorway, it needs to be determined whether the data represents 
congestion from flow breakdown at that point or whether the congestion results from a downstream 
bottleneck, i.e. there is a need to differentiate between cause and symptom. 

A data analysis related to the identification of a critical bottleneck location is shown in Figure 8.4. The 
example indicates that the flow at the bottleneck reached capacity and flow breakdown followed when 
demand exceeded capacity, while flows within the shockwave area were significantly lower than the capacity 
such that throughput is not optimised. 



Guide to Traffic Management Part 2: Traffic Theory 

 
 

 
 

Austroads 2015 | page 76 
 

Figure 8.4:  Flow-occupancy graphs of flow breakdown and shock wave 

 

Flow-occupancy graph at a critical bottleneck(1) 

 

Flow-occupancy graph within the shockwave  
area upstream of a critical bottleneck(2) 

1 Flow breakdown occurs at capacity (approx. 2200 veh/h/ln). 
2 Maximum flow rate (approx. 1800 veh/h/ln) is lower than capacity. 
Source: VicRoads (2013). 

8.1.4. Recovery from Flow Breakdown 

Whilst the mechanism for flow breakdown follows the general pattern described in the fundamental diagram, 
the recovery from flow breakdown follows a different phenomenon generally known as the hysteresis of 
traffic flow. As observed by Brilon, Geistefeldt and Regler (2005), after flow breakdown all recoveries to 
fluent traffic passed through synchronised flow (the transient state) and involved much lower traffic volumes 
than the preceding breakdown as shown in the examples in Figure 8.5. 

Figure 8.5:  Two typical patterns of traffic dynamics during breakdown and recovery 

 

Source: Brilon, Geistefeldt and Regler (2005). 

Traffic flow breakdown and recovery observed on Melbourne’s freeways exhibit similar characteristics. An 
example that shows the path of flow breakdown and recovery is provided in the speed-flow graphs in Figure 
8.6. The lower flows on recovery illustrate that a motorway not only experiences lost productivity during flow 
breakdown but also throughout the flow recovery period. 
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Figure 8.6:  Example of speed-flow diagram during flow breakdown and recovery 

 

Flow breakdown 

 

Flow recovery 

Source: VicRoads (2013). 

8.2. Motorway Operational Capacity 

8.2.1. Capacity of Segment 

Capacity of a road segment, as determined for design purposes, is the maximum sustainable hourly rate at 
which persons or vehicles can reasonably be expected to traverse a point or uniform section of a lane or 
roadway during a given time period under the prevailing roadway, environmental, traffic and control 
conditions (TRB 2010).  

For motorways, capacity could be expressed in passenger car equivalents (PCE) across all lanes. The 
concept of PCE is related to traffic behaviour due to the vehicle mix (i.e. presence of heavy vehicles) in the 
traffic flow. These factors include: 

• physical space taken up by a large vehicle  

• longer and more frequent gaps in front and behind heavy vehicles 

• speed of vehicles in adjacent lanes and their spacing. 

In motorway capacity analysis, heavy vehicles are converted into an equivalent number of passenger cars to 
achieve a consistent measure of flow. 

In measuring the capacity, it is generally the maximum sustained 15 min flow rate, expressed in passenger 
cars per hour per lane (pc/h/ln), that can be accommodated by a uniform motorway segment under prevailing 
traffic and roadway conditions in one direction of flow. The flow rate measured over a short period is 
generally not sustained over a longer period. The ratio of maximum hourly volume to the maximum 15 
minute flow rate expanded to an hourly volume is the peak hour factor (PHF). The PHF is a measure of 
traffic demand fluctuation within the peak hour and is typically up to 0.95 in high flow conditions. 
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Above three lanes, the capacity per lane drops with each additional lane added to a motorway. This 
phenomenon may be because the number of lane-changing conflict points increases with each additional 
lane. An additional factor may be that carriageways with four or more lanes have a greater mix of passive 
and aggressive drivers in their middle lanes resulting in greater uncertainty and friction within these lanes. 
Austroads Guide to Traffic Management Part 3, Section 4.1 (Austroads 2013a) provides further details on 
capacity of uninterrupted flow facilities. 

Operational capacity is the actual real-time capacity for a road segment, which can vary depending on 
prevailing roadway, traffic and control conditions. These variable conditions include the percentage of heavy 
vehicles, driver population (passive or aggressive driving, familiar or unfamiliar with road), road geometry, 
road surface, time-of-day, weather and light. (Theoretical capacity for a road segment is an average capacity 
estimate over a period.) 

Operational capacity, which can be either measured in total vehicles per hour or passenger car equivalents 
per hour, is particularly relevant to the control of managed motorways. For example, ramp signals maintain 
operational capacity while regulating inflow demand to prevent flow breakdown. 

The German Manual for the Design of Road Traffic Facilities (RSRTA 2005) estimates mainline capacities 
for freeways with speed limits of 100 and 80 km/h on grades up to 2% as shown in Table 8.1.  

Table 8.1:  German freeway mainline capacities for two and three lane carriageways 

Number of 
lanes 

Flow Capacity (veh/h) 
Heavy vehicles 

0% 10% 20% 

3 
Total flow 5800 5500 5200 
Flow/lane 1933 1833 1733 

2 
Total flow 4100 3900 3700 
Flow/lane 2050 1950 1850 

Source: Based on German Manual for the Design of Road Traffic Facilities (RSRTA 2005). 

The UK Design Manual for Roads and Bridges, Volume 6, Section 2, Part 1, TD 22/6 (Highways Agency 
2006) provides guidelines for the selection of entry ramp layouts for motorways of varying mainline and 
merging flows. The guidelines include a chart for the selection of an appropriate entry ramp layout. In regard 
to traffic flows (Chapter 3) it indicates: 

For the purpose of designing grade-separated junctions and interchanges, the maximum flow per 
lane for motorways must be taken as 1800 vehicles per hour (vph). These flows do not represent 
the maximum hourly throughputs but flows greater than these will usually be associated with 
decreasing levels of service and safety. 

8.2.2. Capacity at Motorway Entry Ramp Merges 

Contemporary traffic research has also provided insights in relation to the capacity of entry ramp merges. 
Research on Japanese freeways by Shawky and Nakamura (2007) indicated that an increasing ratio of entry 
ramp flow to outflow rates led to a higher breakdown probability, as shown in Figure 8.7. For example, for a 
flow of 2000 veh/h/ln, flow breakdown probability increased from approximately 25% with a 10% ratio of entry 
ramp flow to outflow, to a probability of 85% at a flow ratio of 30%. 
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Figure 8.7:  Observed and estimated breakdown probability at the Shibakoen ramp in Tokyo 

 

Source: Shawky and Nakamura (2007). 

When studying traffic at a freeway merge and the roles of ramp metering, Cassidy and Rudjanakanoknad 
(2002) found that as regulated entry ramp flows decrease through ramp metering, the capacity (throughput) 
departing the merge increases as shown in Figure 8.8. 

Figure 8.8:  Freeway entry ramp capacity with increasing ramp flows 

 

Source: Adapted from Cassidy and Rudjanakanoknad (2002). 

The ITE Freeway and Interchange Geometric Design Handbook (Leisch and Mason 2006) provides 
guidelines for entry ramp capacity assessment. The merge capacity varies according to the upstream 
mainline flow and the entry ramp merging flow. For example, the mainline capacity is in the order of 
2000 veh/h/ln with no entry ramp flow. The capacity reduces to approximately 1600 veh/h/ln with an entry 
ramp flow of 800 veh/h, i.e. approximately 20% capacity drop due to the merging traffic. The chart and 
summary of the entry ramp layouts for the various flows are shown in Figure 8.9 and explanations are in 
Table 8.2. 
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Figure 8.9:  Entry ramp capacity assessment for single-lane merge ramps 

 

Source: Adapted from Freeway and Interchange Geometric Design Handbook (Leisch & Mason 2006). 

Table 8.2:  Entry ramp capacity assessment for single-lane merge ramps 

  

Procedure: (one-lane – taper or parallel) 
1. Enter VF and VR and intersect. 
2. Over, Near or Below Capacity (N = 3 or N = 4)? 
3. If Near or Below – okay! 
4. If Over: 

a. Consider single lane ramp add on freeway 
(capacity – 1900 v/h). 

b. Consider 2-lane entrance (see 2-lane 
procedure). 

c. Increase number of lanes on freeway. 
d. Add entrance lane as auxiliary lane. 
e. Consider two or more of above. 
f. Consider ramp metering. 

Procedure: (two-lane) 
1. Assign 60% of VR to right lane (40% to left). 
2. Auxiliary Lane added downstream. 
3. Enter graph with VF & 40% VR and intersect. 
4. Over, Near or Below Capacity (N = 3 or N = 4)? 
5. If Near or Below – okay! 
6. If Over: 

a. Consider 2-lane add ramp (capacity 3800 v/h) 
b. Consider ramp metering. 

Notes: 

Five-lane freeway subtract 22% from freeway volume approaching entrance and use N = 4. 

Six-lane freeway subtract 35% from freeway volume approaching entrance and use N = 4. 

Source: Based on Freeway and Interchange Geometric Design Handbook (Leisch & Mason 2006). 
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8.3. Merge Capacity for a Managed Motorway with Ramp Signals 

A managed motorway with coordinated ramp signals has the ability to maintain optimal density and capacity 
by managing the carriageway occupancy and minimising flow breakdown. 

The unmanaged flow results in flow breakdown, reduced throughput, reduced speed, congestion and lost 
productivity for the motorway. The managed flow results in optimum throughput and speed as the system 
controls and minimises the potential for flow breakdown as well as automating flow recovery when the flow 
nears the point of breakdown (Figure 8.10). 

Figure 8.10:  Example of unmanaged and managed motorway flow 

Unmanaged motorway 

 

Managed motorway 

 

Flow breakdown occurs 
Note: 
 reduced throughput 
 reduced speed 
 congestion 
 lost productivity. 

Flow breakdown avoided 
Ramp signals with HERO control: 
 prevent flow breakdown 
 maintain optimum throughput 
 maintain optimum speed 
 facilitate flow recovery. 

Source: VicRoads (2013). 

While higher values can be achieved in practice, a value in the order of 2000 veh/h/ln (2100 pc/h/ln) is 
generally more sustainable over a range of conditions. 

Optimum speeds and high capacity flow can only be achieved and maintained over a prolonged period by 
controlling density with coordinated ramp signals. Coordinated ramp metering will be more effective when the 
motorway is rid of localised geometric bottlenecks or any other localised issues causing bottlenecks, such as 
off-ramp overspill and short, narrow sections. Before implementing coordinated ramp metering or any other 
treatments to address corridor-long issues, localised treatments should first be applied to address localised 
congestion issues. Minor civil works or altering the signal phase timings at an exit ramp/arterial road 
intersection to allocate more green time to the ramp may be the first treatments applied where queue spill-
back on the ramp reduces mainline capacity immediately upstream of the exit ramp. 

Once localised bottlenecks have been addressed, typically, ramp merges are the critical capacity sections 
along a motorway. Thus, to prevent flow breakdown along a motorway corridor, it is important to maintain 
sufficient capacity through the ramp merges and other bottlenecks by regulating the in-flows from all ramps 
with coordinated ramp metering. 

When designing motorway projects or upgrading existing motorways, operational capacity values should be 
used rather than theoretical values to gain an appropriate understanding of how the project will perform after 
construction and to ensure that adequate infrastructure is provided for the anticipated demands. 
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Based on VicRoads (2013) research and operational investigations, appropriate maximum capacity values 
for motorway design are: 

• unmanaged motorways: 1800 pc/h/ln (typically 1700 veh/h/ln) which accepts a low risk of flow 
breakdown 

• managed motorways: 2100 pc/h/ln (typically 2000 veh/h/ln) with well-designed infrastructure and a 
coordinated ramp metering system. 

The above values may need to be adjusted for site-specific conditions which will impact motorway capacity, 
including road characteristics and vehicle mix. The ramp merges are usually the critical capacity sections 
which determine a motorway’s maximum operational capacity. 

Within the current Austroads Guides, content on ramp metering design and operation is spread across a 
number of parts of the Guide to Road Design and Guide to Traffic Management. Austroads (2014a) provides 
more up-to-date best practices in ramp metering design and operation. 

Note that ramp metering also provides other benefit such safety (Lee, Hellinga and Saccomanno 2006), 
driver behaviour (Wu, McDonald and Chatterjee 2007) and traffic diversion (Banks 2005). The interested 
reader is directed to these publications and also to the extensive work represented in their reference lists.  

8.4. Theory Underlying Variable Speed Limits (VSL) 

VSL are introduced to improve traffic flow efficiency, road safety or both. Hegyi, De Schutter and Hellendoorn 
(2005) reported two views on the use of speed limits. The first emphasises the homogenisation effect, 
whereas the second is more focused on the prevention of traffic breakdown. The idea of homogenisation is 
that speed limits reduce the speed differences between vehicles, which is expected to result in a higher (and 
safer) traffic flow. The approach typically uses speed limits that are close to, but above, the critical speed 
(the speed that corresponds to the maximal flow). However, Van den Hoogen and Smulders (1994) reported 
that the effect of homogenisation on freeway performance is negligible but that a positive safety effect can be 
expected. The traffic breakdown prevention approach focuses more on preventing high densities and it 
allows lower than critical speed limits. As opposed to the homogenisation approach, it can also resolve 
existing traffic jams. 

Hegyi, De Schutter and Hellendoorn (2005) explained the mechanism of traffic breakdown prevention in 
terms of a change in the fundamental volume-density relationship as illustrated in Figure 8.11. 

Figure 8.11:  Change in volume-density relationship with speed limit reduction 

 

Source: Hegyi, De Schutter and Hellendoorn (2005). 
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In the absence of a speed limit or with a high limit (say 100 km/h), the volume-density graph is the solid, 
gray-shaded, approximately parabolic curve shown in Figure 8.11, similar to the curve shown in Figure 2.3. 
Point 1 on this curve represents traffic conditions at close to capacity, where the slope of the curve is almost 
horizontal and flow breakdown (a switch of flow conditions to the unstable, right-hand side of the curve) is 
most likely to occur. 

With the imposition of a 50 km/h speed limit, the initial part of the volume density curve is changed to the 
straight, broken line from the origin to Point 3, the slope of which is 50 km/h. The final part of the curve is 
unchanged, as shown by the broken line overlaying the thick, gray-shaded line from Point 3 down to the 
point of maximum density and zero volume. If traffic conditions corresponded to Point 1 prior to the speed 
limit reduction, they would change to somewhere between Points 2 and 3, decreasing volume and increasing 
density but, being on the up-sloping, initial part of the new volume-density relationship, providing more stable 
conditions and greatly reducing the likelihood of flow breakdown. 

Hegyi, De Schutter and Hellendoorn (2005) noted particularly that main-stream speed limitation in the vicinity 
of a freeway on-ramp reduces the likelihood of flow breakdown because the reduction in volume illustrated in 
Figure 8.11 corresponds to larger (time) headways, or gaps, into which entering vehicles can merge. Hegyi, 
De Schutter and Hellendoorn (2005) also commented that that the coordinated use of VSL and ramp 
metering together produces traffic flow efficiency benefits far greater than the sum of the benefits from using 
each independently. 

Abdel-Aty, Dilmore and Dhindsa (2006), Lee, Hellinga and Saccomanno (2006) and Lin, Kang and Chang 
(2004) primarily examined the safety benefits of VSL but also identified some flow efficiency benefits.  

Austroads (2009b) further reviewed both overseas and Australian VSL practices and research work and 
found that most of the VSL installations had provided significant safety benefits. Although the application of 
VSL in some cases did not substantially contribute to improved traffic flow, a more homogeneous traffic 
situation would increase safety and therefore lead to less damage and loss of time for many drivers as well 
as improved reliability of the traffic system and a positive impact on the environment. Most of the evaluations 
also reported positive attitudes from drivers, better speed compliance with posted speed limits, reduced 
mean speed in the controlled area and less speed variance.  

Therefore VSL is a useful tool for motorway control and as a signalling system for sections with unstable 
traffic flow and unsafe driving behaviour. Practitioners need to plan any evaluation before installation in order 
to collect before and after data for accurate comparison and assessment. Austroads (2009c) provided best 
practice recommendations on VSL design and operational principles.  

Other than VSL and ramp metering, other managed motorway tools such as shoulder lane use, variable 
message signs, reversible lanes, automatic incident detection, driver information systems and lane use 
management systems are covered by various Austroads reports (e.g. Austroads 2008, 2009d and 2014a). 
Readers should also refer to AGTM Part 4: Network Management (Austroads 2014b) and Part 5: Road 
Management (Austroads 2014c) for further information on the operation and application principles of these 
managed motorway tools.  
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C1.1 Space Mean Speed and Time Mean Speed  

For any traffic stream, space mean speed is always less than or equal to time mean speed because slower 
vehicles occupy any given segment of road for a longer period of time than faster vehicles, and therefore 
receive a greater weighting in the calculation of space mean speed than they do in the calculation of time 
mean speed. This is illustrated by the following simple numerical example:  

Measured spot speeds at the start of a 1 km length of road record 50% of vehicles travelling at 30 km/h and 
50% at 60 km/h. Hence, the time mean speed is vt = 45 km/h.  

Assume that all vehicles maintain constant speed. Then, travel times over the 1 km length are two minutes 
for those travelling at 30 km/h and one minute for those at 60 km/h. Assume 3 s headways at the 
measurement point, with every second vehicle travelling at 30 km/h and every other vehicle 60 km/h. Then, 
in any two minute period, 40 vehicles enter the 1 km segment, 20 travelling at 30 km/h and 20 at 60 km/h. At 
the end of the two minute period, all 20 travelling at 30 km/h are still within the segment but the first 10 of 
those at 60 km/h have already left it – that is, at this instant, there are 30 vehicles within the 1 km segment, 
20 travelling at 30 km/h and 10 at 60 km/h. Thus the space mean speed is: 

40
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Note that this is the inverse of the average travel time over the 1 km segment, for all vehicles whose spot 
speeds are recorded at the measurement point. That is, 1.5 minutes/km is equivalent to 40 km/h. 

Now, the variance of space speeds can be obtained by noting that, at any instant, 20 vehicles within the 
segment have a speed of 30 km/h and 10 have a speed of 60 km/h, that is, they have deviations from the 40 
km/h space mean speed of -10 km/h and +20 km/h respectively. The variance of space speeds can thus be 
calculated as: 
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Wardrop’s relationship (Wardrop 1952) would then estimate the time mean speed as: 
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which is close to the value of 45 km/h calculated as the arithmetic mean of the spot speeds. 
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C2.1 Implications of a Perfect Linear Speed-Density Relationship 

Although a perfectly linear speed-density relationship for uninterrupted traffic flow (as illustrated in Figure C2. 
1) is not observed in practice (see Figure 2.2), it is instructive to examine the implications of the relationship 
being perfectly linear. 

Figure C2. 1:  Perfectly linear speed-density relationship 

 

In this case, the space mean speed of the traffic would decrease linearly from the mean free speed, vf, at 
zero density, to zero speed at the jam density, kj. That is, the speed-density relationship could be expressed 
mathematically as: 

k)
k
v(vv

j

f
f −=  

C1 

which can be rearranged, with speed as the independent variable, in the form: 
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C2 

The speed-volume relationship could then be derived by substituting the expression on the right hand side of 
Equation C2 in the fundamental traffic flow relationship q = k.v (see Equation 2.3) to give: 
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Equation C.3 is a perfectly parabolic relationship, with zero volume at speeds of zero and vf and a maximum 
volume of q = (kjvf) / 4 when v = vf / 2. See Figure C2 2, which can be compared with the approximately 
parabolic relationship typically observed in practice, as shown in Figure 2.1. 
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Figure C2 1:  Perfectly parabolic speed-volume relationship 

 

Similarly, the volume-density relationship corresponding to Figure C2. 1 could be derived by substituting the 
expression on the right hand side of Equation C1 in the fundamental relationship 
q= k.v to give: 
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f k)

k
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C4 

Equation C4 is also a perfectly parabolic relationship, with zero volume at speeds of zero and kj and 
maximum volume of q = (kjvf) / 4 at k = kj / 2. See Figure C2 2, which can be compared with the 
approximately parabolic relationship typically observed in practice, as shown in Figure 2.3. 

Figure C2 2:  Perfectly parabolic volume-density relationship.. 
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C3.1 Derivations of Queue Length Formulae in Section 4.4.1  

The elementary queuing system considered in Section 4.4.1 is an [M/M/1] system, that is, a single channel, 
single server system with random arrivals, random service times and a 
first-come-first-served discipline. Let the average arrival rate be r queue members per unit time and the 
average service rate be s queue members per unit time. 

Let Pn(t + Δt), n > 0, be the probability that the system is in state n at time t + Δt. If Δt is considered to be 
sufficiently small that only one event – an arrival or a departure (completion of service) – can occur during Δt, 
there are only three ways in which this state could be reached: 

• The system is in state n at time t and there is no change during Δt. 

• The system is in state n-1 at time t and there is one arrival during Δt. 

• The system is in state n+1 at time t and there is one departure during Δt. 

Now note the following probabilities: 

Pr(one arrival during Δt) = r. Δt C5 

Pr(one departure during Δt) = s. Δt C6 

and, since no more than one event can occur during Δt,  

Pr(no arrival during Δt) = 1 – r. Δt C7 

Pr(no departure during Δt) = 1 – s. Δt C8 
 

Then, 

Pn(t + Δt) = Pn(t) x Pr(no arrival) x Pr(no departure) C9 

 + Pn-1(t) x Pr(one arrival) x Pr(no departure) 

 + Pn+1(t) x Pr(no arrival) x Pr(one departure) 
 

Substituting the probabilities from Equations C5 to C8 into Equation C9 and ignoring all (Δt)2 terms as 
negligibly small, leads to: 

Pn(t + Δt) = Pn(t)[1 – (r+s). Δt] + Pn-1(t)[r. Δt] + Pn+1(t)[s. Δt] C10 

Similarly, the special case of n = 0 is: 

P0(t + Δt) = P0(t)[1 – r. Δt] + P1(t)[s. Δt] C11 
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Taking the limit of {[Pn(t + Δt) – Pn(t)] / Δt} as Δt approaches zero produces the derivatives of the above 
probabilities with respect to time, as follows: 

P’n(t) = –(r+s).Pn(t) + r.Pn-1(t) + s.Pn+1(t), for n > 0 C12 
 

And 

P’0(t) = –r.P0(t) + s.P1(t) C13 
 

For time-independent, steady-state conditions, these derivatives must be zero (substituting from Equation 
4.1): 

(1 + ρ).Pn = Pn+1 + ρ.Pn-1 for n > 0 C14 
 

And 

P1 = ρ.P0 C15 

where Pn is the steady-state probability of the system being in state n. 

Letting n = 1 in Equation C14 and substituting for P1 from Equation C15 leads to the result: 

P2 = ρ2 .P0 C16 

and, in fact, it can be shown that the more general result applies: 

Pn = ρn .P0 C17 
 

Now observe that: 

∑
∞

=0n
nP  = 1 = P0 (1 + ρ  + ρ2 + ρ3 + ….) = 

ρ−1
P0  

C18 

So that 

P0 = 1 – ρ  C19 

And 

Pn = (1 – ρ)  ρn  C20 
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The mean of this distribution is the expected number in the system and is calculated as: 

E(n) = ∑
∞

=0n
nP.n  = (1– ρ)∑
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ρ
1n
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C21 

 

The probability of there being more than N items in the queuing system is: 

Pr (n > N) = ∑
∞

+= 1Nn
nP 1 = (1– ρ) ∑

∞

+=

ρ
1Nn

n  = 1N+ρ  
C22 

 

The mean queue length, excluding the unit being serviced, is determined as: 

E(m) = 
∑
∞

=

−
1n

nP)1n(
 = ρ−

ρ
1

2

 = ρ−
ρ

1  – ρ  

C23 

 

Thus, 

E(m) = E(n). ρ = E(n)– ρ  C24 
 

Note that, as the steady-state case of ρ < 1  is being considered,  E(m) is not (as might be expected) equal 
to E(n) – 1. This is because there is a finite probability that the system is empty, in which case n = m = 0. 

The final result related to queue length is the variance of the number of units in the system, which can be 
shown to be:  

σ2(n) = ∑
∞

=0n

2n Pn – [E(n)]2 = 
2)1( ρ−

ρ  
C25 

[Back to body text] 
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C4.1 Derivations of Queue Delay Formulae in Section 4.4.2 

The time spent by an individual in a queuing situation is made up of the time spent waiting in the queue until 
service is commenced (denoted by ‘w’) and the time spent being served. 

The time spent waiting for service to be commenced will be zero if the queuing system is empty (i.e. no queue 
and no-one being served) when the individual arrives. The probability of a zero waiting time is thus the same as 
the probability of the system being empty, which is given by Equation 4.2 (or Equation C19). That is: 

Pr(w = 0) = P0 = 1 – ρ = 
ρ−

ρ
1

 – ρ C26 

 

If the queuing system is not empty when an individual arrives, the waiting time will be non-zero. If a 
probability frequency function f(w) is postulated for w, then the probability that the waiting time will be 
between w and w+dw can be stated as: 

Pr(w < wait < w+dw) = f(w).dw C27 
 

The frequency distribution f(w) can be identified by observing that the joint probability that there will be n 
items in the system when an individual arrives and that the individual will have a waiting time before 
commencing service between w and w+dw, where dw is sufficiently small that it can accommodate only one 
event, is the product of the following three probabilities: 

1. The probability, Pn, that the system is in state n when the individual arrives. 

2. The probability of n – 1 units completing service during the time w. Given that the average service rate is 
s and therefore the average number of units served in time w is sw, this probability is given by the 
Poisson distribution as: 

Pn-1(w) = ( ) !1n
e)sw( sw1n

−

−−

 

C28 

3. The probability of the nth unit completing service during dw, which is: 

P1(dw) = s.dw C29 

Summing over all n > 0 gives 

f(w).dw = ∑
∞

=
−

1n
11nn )dw(P).w(P.P

 

C30 

 = dw.s
!)1n(

e)sw()1(
1n

sw1n
n∑

∞

=

−−

−
ρ−ρ  

 = rwsw e.dw.e)rs( −−ρ  
 



Guide to Traffic Management Part 2: Traffic Theory 

 
 

 
 

Austroads 2015 | page 97 
 

Dividing through by dw,  

f(w) = 
w)rs(e)rs( −−−ρ  C31 

The cumulative forms of this distribution are as follows: 

Pr (0 < wait ≤  w )f(w) = ∫
w

0

dw).w(f  = w)rs(e −−ρ−ρ  
C32 

And 

Pr(wait > w) = ∫
∞

w

dw).w(f  = w)rs(e −−ρ  
C33 

As would be expected, these two probabilities and that in Equation C26 sum to unity. 

The average, or expected waiting time before start of service, over all arrivals, is: 

E(w) = ∫
∞

+ρ−
0

dw).w(f.w)1(0  = rs −
ρ

)rs(s
r
−  

C34 

 

And the average waiting time over only those arrivals whose wait is non-zero is: 

E(w | w >0) = 
ρ

)w(E  = 
rs

1
−

 C35 

 

The total time spent in the system, including service time, is denoted by τ . If a probability frequency function 
)(f τ  is postulated for τ , then: 

Pr ( τ  < total time < τ+τ d ) = ττ d).(f  for τ  > 0 C36 
 

On arrival, an individual may find n units already in the system, where n = 0, 1, 2, …, ∞ . Given this, the 
frequency distribution )(f τ  can be derived in a manner very similar to that used to derive the waiting time 
before start of service, w, by noting that: 

ττ d).(f  = )d(P).(P.P 1n
0n

n ττ∑
∞

=  

C37 

 = τ
τ

ρ−ρ
τ−∞

=
∑ d.s

!n
e)s()1(

sn

0n

n  

 = ττ− τρ− rs e.d.e)1(s  
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Dividing through by τd  and rearranging: 

)(f τ  = 
τ−−− )rs(e)rs(  C38 

 

The average, or expected total time in the system, over all arrivals, is the mean of this distribution, which is: 

)(E τ  = ∫
∞

τττ
0

d).(f.  = 
rs

1
−

 
C39 

 

Comparing this with Equation C34, as would be expected, 

)(E τ  = 
s
1)w(E +  

C40 

[Back to body text] 
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C5.1 Derivations of Formulae in Section 5.2.1 for Delays to Minor Traffic in Gap 

Acceptance Situations 

Figure C5 1 clarifies the definitions of gaps, lags, blocks and anti-blocks given in Table 5.1. In this figure, the 
arrival times (in seconds) at an unsignalised intersection of successive major road vehicles are shown as 
heavy lines rising vertically from a horizontal time axis. Time zero corresponds with the arrival of a minor 
road vehicle at its stop line at the intersection. All minor road vehicles are assumed to have a critical gap of 
2.0 s. 

On its arrival at time t = 0, the first minor road vehicle is faced with a lag (i.e. time before the arrival of the 
next major road vehicle) of 4.4 s. During the first 2.4 s of this lag, the minor road vehicle could (and probably 
would) depart, because a time not less than its critical gap of 2.0 s remains before the major road vehicle 
arrives.  

A following minor road vehicle arriving at the stop line just after time t = 2.4 s could not depart, however, 
because it would be faced with a lag less than its critical gap of 2.0 s. Successive major road arrivals at times 
t = 5.2, 6.4 and 7.8 s mean that this minor road vehicle would then be faced with three gaps (headways 
between successive major road vehicles) of 0.8, 1.2 and 1.6 s, respectively. All these gaps are less than the 
minor road vehicle’s critical gap, so it could not depart during this time. Time t = 7.8 s, however, marks the 
start of a gap of 8.2 s – much greater than the critical gap, and the minor road vehicle could then depart. In 
fact, any minor road vehicle arriving at the stop line during the interval t = 7.8 s and t = 14.0 s (2.0 s before 
the next major road arrival) could depart. 

Thus, from the point of view of minor road drivers, the time at the stop line is divided into a series of intervals, 
which alternate between time when they are blocked from entering the intersection (‘blocks’) and time when 
they can enter the intersection (‘anti-blocks’), as illustrated in Figure C5 1. 

Figure C5 1:  Major traffic stream arrivals, blocks and anti-blocks 

 

By the definitions of blocks and anti-blocks, an anti-block can start only with the end of a block and vice 
versa. Therefore, over a significant period of time, the number of blocks and the number of anti-blocks will be 
equal.  

Assuming random arrivals in the major traffic stream, its headway distribution will be negative exponential 
and the number of anti-blocks during a time period H will be the number of headways greater than or equal 
to the critical gap, T. Hence, if the volume of the major traffic stream is q: 

Number of anti-blocks (= number of blocks), N = qTeqH −  C41 
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Time after arrival of minor traffic stream unit at gap acceptance point (s) 
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BLOCK 

CRITICAL GAP = 2.0 s 



Guide to Traffic Management Part 2: Traffic Theory 

 
 

 
 

Austroads 2015 | page 100 
 

The average duration of anti-blocks is equal to the average duration of headways at least as large as the 
critical gap, T, minus the last interval T of such headways. Thus, drawing on Equation 3.23: 

Average duration of anti-blocks = TT
q
1

−







+  = 

q
1  

C42 

 

Over the period H, the total time in anti-blocks is equal to the number of anti-blocks multiplied by their 
average duration, that is: 

Total time in anti-blocks = 
q
1.eqH qT−  = qTeH −  

C43 

 

The remainder of the period H must be spent in blocks, so that: 

Total time in blocks = )e1(H qT−−  C44 

 

The average duration of blocks can then be calculated as this total time divided by the number of blocks, that is: 

Average duration of blocks = 
qT

qT

eq
e1
−

−−
 

C45 

 

As minor traffic is arriving randomly, the proportion of minor traffic stream units that will be delayed at the gap 
acceptance point (e.g. at the stop line) is the proportion of time spent in blocks, that is: 

Proportion delayed = qTe1 −−  C46 

 

The average delay at the gap acceptance point for all minor traffic stream units can be derived by noting that 
the probability of any unit having to wait for n gaps, each less than T, before being able to proceed is given 
by the geometric distribution as: 

np)p1()n(P −=  n = 0, 1, 2, …. C47 

 

where (drawing on Equation 3.16) 

p = Pr(gap < T) = 1 – e-qT C48 
 

so that 

P(n) = 
nqTqT )e1(e −− −  C49 
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The expected number of gaps less that T for which a minor traffic stream unit has to wait before being able to 
proceed is then given by: 

E(n) = ++++ )3(P.3)2(P.2)1(P.1)0(P.0  C50 

 = +−+−+− −−−−−− 3qTqT2qTqTqTqT )e1(e3)e1(e2)e1(e  

 = 
qT

qT

e
e1
−

−−  

 

Now the average duration of headways less than T in the major traffic stream is given by Equation 3.24 as: 

)Th(hav <  = 
qT

qT

e1
eT

q
1

−

−

−
−  

C51 

 

Then the average delay experienced by all minor traffic stream units at the gap acceptance point is: 

)0d(dav ≥  = )]Th(h[.)n(E av <  C51 

 = 
)e1(q

)eqTe1(
)e(

)e1(
qT

qTqT

qT

qT

−

−−

−

−

−
−−−

 

 

which simplifies to: 

)0d(dav ≥  = T
q
1

eq
1

qT
−−

−
 

C52 

 

The average delay at the gap acceptance point to only those minor traffic stream units that do 
experience such delay is obtained by dividing the average delay to all minor stream units (as in Equation 
C52) by the proportion experiencing non-zero delay (given by Equation C46) to give: 

)0d(dav ≥  = 
)e1(

1
)e1(q

)eqTe1(
)e(

)e1(
qTqT

qTqT

qT

qT

−−

−−

−

−

−−
−−−

 
 

 

which simplifies to: 

)0d(dav ≥  = 
qTqT e1

T
qe

1
−− −

−  
C53 

 
[Back to Section 3] 
[Back to Section 5]  
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Curve 2 in Figure 4.5.12 in RTA (1999) provides an example of the application of Equation 5.1 (or Equation 
C46). This curve is presented as the boundary separating the choice between rural intersection types ‘AU’ 
and ‘CH’, the latter of which includes provision of a sheltered turn lane for right-turning vehicles. 

In RTA (1999), the equation to Curve 2 is provided as: 

QR = 
gt0qe1

D
−−  

C54 

where   

QR = the total volume turning right from the relevant approach (veh/h)  

D = 
the number of right-turning vehicles per hour that will have to wait for a 
suitable gap (tg) before being able to turn, rather than being able to turn 
immediately 

 

q0 = the traffic volume opposing the right turn (veh/s)  

tg = the minimum gap in opposing traffic that allows the right turn to be made 
(s/veh) 

 

 

The criterion implied by Curve 2 is that provision of a sheltered turn lane should be considered if D or more 
of the QR vehicles per hour turning right are unable to do so immediately, but must wait until at least one 
opposing vehicle has passed before being able to turn. That is, that the proportion of right-turners delayed is: 

Proportion delayed = 
RQ

D  C55 

 

Then, applying Equation 5.1 (or C46), with q = q0 and T = tg, and rearranging, Equation C54 is obtained. 

Note that in Figure 4.5.12 in RTA (1999), Curve 2 is drawn for values of D = 15 veh/h and tg = 5 s/veh. 

[Back to Section 3]  
[Back to Section 5] 
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C7.1 Average Delay 

The following procedure provides an approximate and usually conservative guide for delay. The method is 
based on Tanner(1962). The average delay to minor stream vehicles entering a major stream may be 
calculated as follows: 

• Determine the practical absorption capacity  CP of the minor stream approach as described in 
Section 5.2.2.  

• Determine the number of minor stream approach lanes required. Usually the number of lanes required is 
equal to the next whole number greater than the total minor stream volume divided by CP. 

• Determine the volume per lane on the minor stream approach by dividing the total minor stream volume 
by the number of lanes on the approach. 

The average delay to minor stream vehicles entering the major stream is then given by the following: 

Wm=
qpeqptf �eqpta-qpta-1� +qmeqpta �eqptf-qptf-1�

qp �qpeqptf-qmeqpta(eqptf-1)�
 

C54 

where   

Wm = average delay to minor stream vehicles (s/veh)  

qp = major stream volume (veh/s)  

qm = minor stream volume per lane (veh/s)  

ta = critical acceptance gap (s)  

tf  follow-up headway (s)  
 

The major stream volume can be the sum of more than one flow as illustrated in Figure C7 1. When the 
conflicting traffic stream arrivals at an intersection are randomly distributed, the capacity of the ‘major’ stream 
to absorb the ‘minor’ flow, along with the resulting delays, can be estimated from the graphs or formulas 
given in Figure C7 2. It is important to choose the right values of critical acceptance gap ta and follow-up 
headway tf to represent the situation being analysed. Suitable values are given in Table C7 1. Average delay 
to minor stream vehicles at unsignalised intersections can also be measured using data from Figure C7 3 to 
Figure C7 10. 

Note that Figure C7 1 to Figure C7 10 were retrieved from the 2005 version of Guide to Traffic Engineering 
Practice (GTEP) Part 5, which is no longer available from Austroads and it is superseded by Guide to Traffic 
Management Part 6 (Austroads 2013b) and Guide to Road Design Parts 4A, 4B and 4C (Austroads 2010, 
2011and 2009e).  
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Table C7 1:  Minimum gap sight distance (MGSD)  

 

 

Figure C7 1:  Example of major and minor flows  
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Figure C7 2:  Unsignalised intersection (practical absorption capacity)  
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Figure C7 3:  Average delay to minor stream vehicles at unsignalised intersections (ta= 3 sec, tf = 2 sec)  
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Figure C7 4:  Average delay to minor stream vehicles at unsignalised intersections (ta= 4 sec, tf = 2 sec)  
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Figure C7 5:  Average delay to minor stream vehicles at unsignalised intersections (ta = 5 sec, tf = 2 sec)  
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Figure C7 6:  Average delay to minor stream vehicles at unsignalised intersections (ta= 5 sec, tf= 3 sec)  
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Figure C7 7:  Average delay to minor stream vehicles at unsignalised intersections (ta = 6 sec, tf = 3 sec)  

 

 



Guide to Traffic Management Part 2: Traffic Theory 

 
 

 
 

Austroads 2015 | page 111 
 

Figure C7 8:  Average delay to minor stream vehicles at unsignalised intersections (ta = 6 sec, tf = 4 sec)  
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Figure C7 9:  Average delay to minor stream vehicles at unsignalised intersections (ta = 8 sec, tf = 4 sec)  
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Figure C7 10:  Average delay to minor stream vehicles at unsignalised intersections (ta = 8 sec, tf = 5 sec)  

 

 

[Back to Section 3] 
[Back to Section 5] 
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C8.1 Derivation of Theoretical Absorption Capacity Formula in Section 5.2.2 

To derive the theoretical absorption capacity, assume that a queue of minor traffic stream vehicles is waiting 
to cross or enter a major traffic stream that has volume q and a negative exponential headway distribution, 
and let ti be the minimum gap required to allow i minor traffic stream vehicles to carry out the manoeuvre 
within the one gap, where i = 1, 2, 3,....  

During a significant period of time,H , the number of major road headways greater than or equal to ti, i = 1, 
2, 3,..., is: 

 No. of headways iqt
i H.qet −=≥  C56 

 

Therefore, the number of major traffic stream headways that allow exactly i minor traffic stream vehicles to 
cross or enter the major stream, i = 1, 2, 3,..., is: 

 )eqeq.(Hn 1iqtiqt
i

+−− −=  C57 

Hence, the total number of minor stream vehicles able to cross or join the major stream during the period H is: 

N = ∑
∞

=1i
in.i
 

C58 

= )ee(Hq.i 1ii qt

1i

qt +−
∞

=

− −∑
 

= ∑
∞

=

−

1i

qtieqH
 

Taking the critical gap, T, as the minimum headway that will allow one minor stream vehicle to cross or join 
the major stream, assume that each additional time interval T0 in the size of the headway is sufficient to allow 
one additional minor stream vehicle to follow in undertaking the manoeuvre. T0 is known as the follow-up 
headway and the above assumption implies that: 

 ...,3,2,1i,T)1i(Tt 0i =−+=  C59 
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Substituting from Equation C59 into Equation C58: 

N = ∑
∞

=

−+−

1i

)T)1i(T(q 0eqH  
C60 

= ( )∑
∞

=

−−

0k

kqTqT 0eeqH  

= 
0qT

qT

e1
eqH
−

−

−
 

 

Thus the theoretical maximum rate at which minor stream vehicles can cross or join the major traffic stream, 
that is, the theoretical absorption capacity, is obtained as: 

 

0qT

qT

e1
eq

H
NC −

−

−
==  

C61 

 

This is the relationship presented as Equation 5.4, in Section 5.2.2. 

[Back to body text] 
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At an intersection where gap acceptance applies, where major road traffic arrives randomly from each 
direction and where a right-turning vehicle from a minor road seeks different sized critical gaps in the traffic 
flows from the two different directions on the major road, the theoretical absorption capacity can be 
developed as follows: 

Assume that the total major traffic stream is made up of the traffic flow from the left, with volume qL, and the 
flow from the right, with volume qR. Each gap or headway in the total traffic stream starts with the arrival of a 
vehicle from one direction and ends with the next arrival, which may be from the same or the opposite 
direction. Therefore, during a significant period of time H, the number of headways in the total major traffic 
stream will be: 

 Total number of headways = )qq(H RL +  C62 

Now assume that a queue of minor traffic stream vehicles is waiting to turn right and must give way to this 
major traffic stream, which has a negative exponential headway distribution in each direction. Let the 
combination of a gap of at least tL,i in the major traffic from the left with a gap of at least tR,i in the major traffic 
from the right be the minimum condition required to allow i minor traffic stream vehicles to make the right turn 
within the one gap, where i = 1, 2, 3,.... 

The probability of the simultaneous occurrence of a headway greater than or equal to i,Lt  in the major road 

flow from the left and a headway greater than or equal to i,Rt  in the major road flow from the right is: 

 
Pr ( i,LL th ≥ | i,RR th ≥ ) 

)i,RtRqi,LtLq(i,RtRqi,LtLq ee.e +−−− ==  
C63 

Hence, during the significant period of time H, the number of major traffic stream headways large enough to 
allow at least i  minor traffic stream vehicles to make the right turn, i = 1, 2, 3,... is: 

 No. of headways ( i,LL th ≥ | i,RR th ≥ ) )i,RtRqi,LtLq(
RL e)qq(H +−+=  C64 

Therefore, the number of major traffic stream headways that allow exactly i minor traffic stream vehicles to 
turn right, i = 1, 2, 3,... is: 

 ni = H.�qL+qR�.�e
-(qLtL,i+qRtR,i) − e-(qLtL,i+1+qRtR,i+1)� C65 

Hence, the total number of minor stream vehicles able to turn right during the period H is: 

N= ∑
∞

=1i
in.i
 

C66 

= [ ]∑
∞

=

+−+− ++−+
1i

)tqtq()tqtq(
RL

1i,RR1i,LLi,RRi,LL ee.i)qq(H
 

= ∑
∞

=

+−+
1i

)tqtq(
RL

i,RRi,LLe)qq(H
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Now assume that a critical gap TL in the major traffic flow from the left is the minimum that will allow one 
minor stream right-turner to cross that stream, and that a critical gap TR in the major traffic flow from the right 
is the minimum that will allow one minor stream right-turner to join that stream. Further, assume that an 
additional follow-up headway T0 is sufficient to allow one additional minor stream vehicle to follow in 
undertaking the manoeuvre. This implies that: 

 ...,3,2,1i,T)1i(TtandT)1i(Tt 0Ri,R0Li,L =−+=−+=  C67 

 

Substituting from Equations C67 into Equation C66: 

N= ∑
∞

=

−++−+−+
1i

)T)1i(qTqT)1i(qTq(
RL

0RRR0LLLe)qq(H
 

 

= ∑
∞

=

−+−+−+
1i

T)1i()qq()TqTq(
RL

0RLRRLL ee)qq(H
 

= ( )∑
∞

=

+−+−+
0k

kT)qq()TqTq(
RL

0RLRRLL ee)qq(H
 

= 
0RL

RRLL

T)qq(

)TqTq(
RL

e1
e)qq(H
+−

+−

−
+  C68 

 

Thus the theoretical maximum rate at which minor stream vehicles can turn right, that is, the theoretical 
absorption capacity, is obtained as: 

 
0T)RqLq(

)RTRqLTLq(
RL

e1
e)qq(

H
NC

+−

+−

−
+

==  
C69 
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C10.1 Derivation of Gap Acceptance Formulae for Displaced Negative Exponential 

Distribution Of Headways in the Major Traffic Flow 

(a) Probabilities of headways of given size 

As discussed in Section 3.3.3, the displaced negative exponential headway distribution postulates a 
minimum possible headway of β  s/veh and is characterised by the probability density function 

 β−
β−−

β−
= q1

)t(q

e
q1

q)t(f
  for β≥t  

C70 

and   

 0)t(f =    for β<t  C71 

By integration of the function in Equation C70 the probabilities for headway size, h  are obtained: 

 
∫
∞ β−

β−−

==≤≤β
t

q1
)t(q

edt).t(f)htPr(  
C72 

and   

 
β−
β−−

β
−==≤≤β ∫ q1

)t(q
t

e1dt).t(f)thPr(  
C73 

and, of course, by definition: 

 0)hPr( =β<  C74 

Over a significant period of time, H, there will be qH headways in the major stream flow and it follows from 
Equations C72 to C74 that the number of headways, N, in each of the size ranges will be: 

 
β−
β−−

=≤≤β q1
)t(q

e.qH)ht(N  
C75 

and 
)e1(.qH)th(N q1

)t(q
β−
β−−

−=≤≤β  
C76 

 0)h(N =β<  C77 
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(b) Average duration of headways within a given range 

Over a period H, the number of headways of duration t to t+dt, where dt is infinitesimally small and β≥t , will be: 

 
dt.e.

q1
q.qHdt.)t(f.qH)dttht(N q1

)t(q
β−
β−−

β−
==+≤≤  

C78 

and the time spent in such headways will be: 

 
dt.e.

q1
q.qH.t)dttht(N.t)dttht(T q1

)t(q
β−
β−−

β−
=+≤≤=+≤≤  

C79 

Therefore, the total time spent in headways ≥ t (where β≥t ) is: 

 
dt.e.

q1
q.tqH)ht(T q1

)t(q

t

β−
β−−

∞

β−
=≤≤β ∫  

C80 

The integral here is of the form dt.ea.t bat∫ +− , for which the solution is 



 +
− +−

2

bat

a
)1at(.e . In this case, 

β−
=

q1
qa  and 

β−
β

=
q1

qb  and Equation C80 becomes: 

 








β−+=≤≤β β−

β−−

t
q
1.e.qH)ht(T q1

)t(q

 
C81 

The average duration of headways greater than or equal to t (where t ≥ β) can now be obtained as the total 
time spent in such headways (Equation C81) divided by the number of such headways (Equation C75), that 
is: 
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By a similar analysis, noting that the total time spent in headways ≤ t (where β≥t ) is H minus the time given 
by Equation C81and that the number of such headways is as in Equation C76, Equation C83 is derived: 
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(c) Average delays to minor traffic 

As in Commentary 5, the average delay at the gap acceptance point for all minor traffic stream units can be 
derived by noting that the probability of any unit having to wait for n gaps, each less than T, before being 
able to proceed is given by the geometric distribution as: 

 np)p1()n(P −=  n = 0, 1, 2, … C84 

 

where (drawing on Equation C73) 
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so that 
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The expected number of gaps less than T for which a minor traffic stream unit has to wait before being able 
to proceed is then given by: 
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Now the average duration of headways less than T in the major traffic stream is given by Equation C83 as: 
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Then the average delay experienced by all minor traffic stream units at the gap acceptance point is: 
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which simplifies to: 
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The average delay at the gap acceptance point to only those minor traffic stream units that do 
experience such delay is obtained by dividing the average delay to all minor stream units (as in Equation 
C88) by the proportion experiencing non-zero delay (equal to the probability of a headway < T, as given by 
Equation C73) to give: 
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which simplifies to: 
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(d) Absorption capacity 

To derive the theoretical absorption capacity, assume that a queue of minor traffic stream vehicles is waiting 
to cross or enter a major traffic stream that has volume q and a displaced negative exponential headway 
distribution, and let ti be the minimum gap required to allow i minor traffic stream vehicles to carry out the 
manoeuvre within the one gap, where i = 1, 2, 3,.... 

During a significant period of time, H, the number of major road headways greater than or equal to ti, i = 1, 2, 
3,... is: 
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Therefore, the number of major traffic stream headways that allow exactly i minor traffic stream vehicles to 
cross or enter the major stream, i = 1, 2, 3,... is: 
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Hence, the total number of minor stream vehicles able to cross or join the major stream during the period H is: 
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C92 

 

Taking the critical gap ,T, as the minimum headway that will allow one minor stream vehicle to cross or join 
the major stream, assume that each additional time interval T0 in the size of the headway is sufficient to allow 
one additional minor stream vehicle to follow in undertaking the manoeuvre. T0 is known as the follow-up 
headway and the above assumption implies that: 
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Substituting from Equation C93 into Equation C92, gives: 
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Thus the theoretical maximum rate at which minor stream vehicles can cross or join the major traffic stream, 
that is, the theoretical absorption capacity, is obtained as: 
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[Back to Section 3] 
[Back to Section 5] 
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