Pavement

Cover of Characterisation and Performance Evaluation of Granular Bases Project: Pavement Construction Report
Characterisation and Performance Evaluation of Granular Bases Project: Pavement Construction Report
  • Publication no: AP-T267-14
  • ISBN: 978-1-925037-70-8
  • Published: 30 May 2014

A new rut resistance approach based on the wheel-tracking test for unbound granular materials has been developed. The objective of the Austroads project TT1819 is to validate the wheel-tracker laboratory approach against large-scale Accelerated Loading Facility (ALF) pavement performance results. A major component of the research project involves collecting permanent deformation data under accelerated loading. This report details the construction of the test pavements.

Four unbound granular pavements were constructed at the ALF in Dandenong, Melbourne. Each pavement comprised an unbound granular base of 300 mm nominal thickness supported by a 150 mm thick cement-treated subbase to isolate the deformation in the top layer.

Each of the four pavements was built from different road base materials anticipated to provide contrasts in rut resistance. For each material three, 12m long possible ALF testing sites have been prepared.

Thickness and density data have been collected during the construction process indicating that the four pavements are uniform and appropriate to be tested under ALF trafficking. The testing program will be based on pavement surface permanent deformation monitoring under a given axle load.

  • 1. Introduction
    • 1.1. Background
    • 1.2. Objective and Scope of Project TT1819
    • 1.3. Scope of this Report
  • 2. Pavement Testing Configuration
    • 2.1. The ALF Site
    • 2.2. Construction Concept for Deformation Monitoring
    • 2.3. Adopted Pavement Structure
      • 2.3.1. Existing Test Pavements
      • 2.3.2. Bearing Capacity Stabilised Imported Clay
      • 2.3.3. Re-use of Material Considerations and Proposed Construction Phasing
    • 2.4. Test Site Layout
    • 2.5. Moisture Monitoring System
      • 2.5.1. Brief Description of the TDR Principle
      • 2.5.2. Moisture Sensors Embedded in the Test Pavements
  • 3. Base Material Selection
    • 3.1. Initial Quarry Selection
      • 3.1.1. Special Crushed-rock Materials Specifications
      • 3.1.2. First Quarry Selection
      • 3.1.3. Ability to Supply the Four Materials
    • 3.2. Alternative Quarry Options
      • 3.2.1. Option 1: Size 10 mm Crushed Granite
      • 3.2.2. Option 2: Crushed Hornfels with Low and High-plasticity
      • 3.2.3. Option 3: Crushed Hornfels and Crushed River Gravel
    • 3.3. Final Material Selection
  • 4. Construction Overview
    • 4.1. Key Construction Issues
      • 4.1.1. Indoor Construction
      • 4.1.2. Pavement Dry-back
      • 4.1.3. Uniformity
    • 4.2. Pavement Construction Equipment
    • 4.3. Construction Schedule
  • 5. Preliminary Works
    • 5.1. Removal of Shed Wall Panels
    • 5.2. Removal of Existing Pavement
    • 5.3. Stabilisation of Clay Subgrade
    • 5.4. Recycled Crushed-rock
    • 5.5. Cement-treated Crushed-rock Construction
  • 6. Pavement Bases Construction and Sealing
    • 6.1. Basecourse Construction
      • 6.1.1. Lane 1
      • 6.1.2. Lane 2
      • 6.1.3. Lane 4
      • 6.1.4. Lane 3
    • 6.2. Final Trimming
    • 6.3. Dry-back Monitoring Program
    • 6.4. Surface Priming
      • 6.4.1. Primer Selection
      • 6.4.2. Primer Trial
      • 6.4.3. Application of Primer
    • 6.5. Spray Sealing
  • 7. Construction Evaluation
    • 7.1. General
    • 7.2. Reduced-level Surveys
    • 7.3. Densities and Moistures
    • 7.4. FWD
      • 7.4.1. FWD Evaluation of the Cement-treated Subbase
      • 7.4.2. FWD Survey of the Final Pavements
  • 8. Summary of the Constructed Pavement Conditions
    • 8.1. Material
    • 8.2. Thickness
    • 8.3. Moisture and Density
    • 8.4. FWD
  • 9. Conclusions
  • References
  • Appendix A FWD Results
  • A.1 After Construction of the CTCR Layer
  • A.1.1 Offset: 3.375 m, Target Stress: 550 kPa
  • A.1.2 Offset: 3.375 m, Target Stress: 700 kPa
  • A.1.3 Offset: 7.125 m, Target Stress: 550 kPa
  • A.1.4 Offset: 7.125 m, Target Stress: 700 kPa
  • A.1.5 Offset: 10.875 m, Target Stress: 550 kPa
  • A.1.6 Offset: 10.875 m, Target Stress: 700 kPa
  • A.1.7 Offset: 14.625 m, Target Stress: 550 kPa
  • A.1.8 Offset: 14.625 m, Target Stress: 700 kPa
  • A.2 After Sealing Pavement
  • A.2.1 Offset: 3.54 m, Target Stress: 550 kPa
  • A.2.2 Offset: 3.54 m, Target Stress: 700 kPa
  • A.2.3 Offset: 7.29 m, Target Stress: 550 kPa
  • A.2.4 Offset: 7.29 m, Target Stress: 700 kPa
  • A.2.5 Offset: 11.04 m, Target Stress: 550 kPa
  • A.2.6 Offset: 11.04 m, Target Stress: 700 kPa
  • A.2.7 Offset: 14.79 m, Target Stress: 550 kPa
  • A.2.8 Offset: 14.79 m, Target Stress: 700 kPa
  • Appendix B Nuclear Density and Gravimetric results during Dry-Back
  • B.1 Lane 1
  • B.1.1 Layer 1 (0–100 mm)
  • B.1.2 Layer 2 (100–200 mm)
  • B.1.3 Layer 3 (200–300 mm)
  • B.2 Lane 2
  • B.2.1 Layer 1 (0–100 mm)
  • B.2.2 Layer 2 (100–200 mm)
  • B.2.3 Layer 3 (200–300 mm)
  • B.3 Lane 3
  • B.3.1 Layer 1 (0–100 mm)
  • B.3.2 Layer 2 (100–200 mm)
  • B.3.3 Layer 3 (200–300 mm)
  • B.4 Lane 4
  • B.4.1 Layer 1 (0–100 mm)
  • B.4.2 Layer 2 (100 mm – 200 mm)
  • B.4.3 Layer 3 (200 mm – 300 mm)
  • Appendix C Base Layer Pavement Evaluation After Road Sweeping
  • Appendix D Sprayed-Seal Design
  • D.1 Background
  • D.2 Design Traffic Input Parameters
  • D.3 First Application Seal Design
  • D.3.1 Basic Voids Factor and Design Voids Factor
  • D.3.2 Binder Application Rate
  • D.3.3 Aggregate Spread Rate (First Seal) Calculations
  • D.4 Second Application Seal Design
  • D.4.1 Basic Voids Factor and Design Voids Factor (Second Seal) Calculations
  • D.4.2 Binder Application Rate (Second Seal) Calculations
  • D.4.3 Aggregate Spread Rate (Second Seal) Calculations
  • D.5 Sprayed Sealing Parameters
  • Appendix E ALF Site Drainage System
  • Appendix F Summary of the Investigated Crushed-rock Properties
  • F.1 Summary of Proposed Material Properties for Option A
  • F.2 Summary of Proposed Material Properties for Option B
  • F.3 Summary of Proposed Material Properties for Option C