Pavement

Cover of Guide to Pavement Technology Part 4D: Stabilised Materials
Guide to Pavement Technology Part 4D: Stabilised Materials
  • Publication no: AGPT04D-19
  • ISBN: 978-1-925854-17-6
  • Published: 12 April 2019
  • Edition: 2.1

The use of stabilisation technology for stabilising and recycling materials for pavement construction and maintenance is widely accepted as a cost-effective method of improving long‑term performance and reducing whole-of-life costs of modern, heavily‑trafficked pavements.

Guide to Pavement Technology Part 4D: Stabilised Materials described in detail the:

  • types of stabilisation undertaken in improving pavement materials and subgrades
  • types of binders used in stabilisation
  • types of materials suited to particular binders
  • laboratory determination of the type and quantity of binder required to achieve a particular type of stabilised material (mix design).

This part of the Guide to Pavement Technology does not detail quality control aspects of manufacture or performance attributes of stabilised materials nor the safety aspects of using specific binders.

The online version of the Guide is being developed.

Edition 2.1 corrects Figures 5.4 and 5.5.

Edition 2.0 is a complete revision of edition 1.0 published in 2006 and includes:

  • restructuring the Guide based on stabilisation materials
  • editorial changes and minor technical changes throughout
  • major technical changes to the guidance relating to cementitiously stabilised materials and foamed bitumen stabilised materials.
  • Summary
  • 1. Introduction
  • 2. Overview
    • 2.1 Purpose of Stabilisation
    • 2.2 Manufacture of Stabilised Materials
      • 2.2.1 Plant-mixed
      • 2.2.2 In situ-stabilised Materials
    • 2.3 Stabilisation Binders
    • 2.4 Categories of Stabilised Materials
      • 2.4.1 Earthworks Materials Stabilisation
      • 2.4.2 Modified Granular Pavement Materials
      • 2.4.3 Cementitiously-bound Pavement Materials
      • 2.4.4 Stabilisation using Bitumen
      • 2.4.5 Granular Stabilisation
    • 2.5 Pavement Configurations Incorporating Stabilised Materials
    • 2.6 Binders used in Stabilisation
      • 2.6.1 Principal Binders and Combinations
      • 2.6.2 Characteristics of Stabilisation Additives
    • 2.7 Selection of Stabilisation Type
      • 2.7.1 Introduction
      • 2.7.2 Sampling and Testing
      • 2.7.3 Preliminary Binder Selection
      • 2.7.4 Final Selection of Binder Type and Content
  • 3. Cementitious Stabilisation
    • 3.1 Introduction
    • 3.2 Commonly used Cements
    • 3.3 Supplementary Cementitious Binders
      • 3.3.1 General
      • 3.3.2 Lime
      • 3.3.3 Pozzolanic Materials
    • 3.4 Water
    • 3.5 Deleterious Materials
    • 3.6 Reaction of Materials with Cementitious Binders
    • 3.7 Properties of Cementitiously-modified Pavement Materials
      • 3.7.1 General
      • 3.7.2 Distress Types
      • 3.7.3 Materials Suitable for Stabilisation
      • 3.7.4 Mix Design
    • 3.8 Properties of Lightly-bound Pavement Materials
    • 3.9 Properties of Cementitiously-bound Pavement Materials
      • 3.9.1 General
      • 3.9.2 Distress Types
      • 3.9.3 Materials Suitable for Stabilisation
      • 3.9.4 Mix Design
    • 3.10 Treatment of Earthwork Materials
  • 4. Lime Stabilisation
    • 4.1 Introduction
    • 4.2 Lime Manufacture
    • 4.3 Types of Lime
    • 4.4 Available Lime Index
    • 4.5 Lime Stabilisation of Pavement Materials
    • 4.6 Properties of Earthworks Materials Stabilised with Lime
      • 4.6.1 General
      • 4.6.2 Rate of Strength Gain
      • 4.6.3 Moisture-density Relationship
    • 4.7 Appropriate Conditions for Lime Stabilisation of Earthworks Materials
      • 4.7.1 General
      • 4.7.2 Material Factors
      • 4.7.3 Production and Construction Factors
    • 4.8 Selecting the Lime Content for Long-term Property Changes
    • 4.9 Selecting the Lime Content to Expedite Construction
  • 5. Bituminous Stabilisation
    • 5.1 Introduction
    • 5.2 Bitumen
      • 5.2.1 General
      • 5.2.2 Foamed Bitumen
      • 5.2.3 Bitumen Emulsion
    • 5.3 Materials Suitable for Bitumen Stabilisation
    • 5.4 Foamed Bitumen Stabilisation Mix Design
      • 5.4.1 Introduction
      • 5.4.2 Bitumen Foaming Characteristics
      • 5.4.3 Secondary Binders
      • 5.4.4 Mixing Moisture Content
      • 5.4.5 Mix Design
    • 5.5 Bitumen Emulsion Mix Design
  • 6. Granular Stabilisation
    • 6.1 Introduction
    • 6.2 Materials
    • 6.3 Design Criteria for Granular Stabilisation
      • 6.3.1 Introduction
      • 6.3.2 Required PSD
      • 6.3.3 Required of Plasticity Properties
      • 6.3.4 Required Aggregate Hardness and Durability
      • 6.3.5 Required Strength and Rut-resistance
    • 6.4 Mix Design
  • 7. Other Forms of Chemical Stabilisation
    • 7.1 Introduction
    • 7.2 Structural Improvement
      • 7.2.1 Dry Powder Polymers
      • 7.2.2 Additives to Lime and Cementitious Binders
    • 7.3 Mix Design
  • 8. Sampling and Testing for Mix Design
    • 8.1 Introduction
    • 8.2 Field Sampling for In Situ Stabilisation
    • 8.3 Laboratory Sample Preparation
      • 8.3.1 Particle Breakdown During Construction
      • 8.3.2 Water Quality
      • 8.3.3 Binders
      • 8.3.4 Laboratory Compaction of Lime-stabilised Subgrade Test Specimens
      • 8.3.5 Laboratory Compaction of Cementitiously-stabilised Pavement Test Specimens
      • 8.3.6 Laboratory Compaction of Bituminous-stabilised Pavement Test Specimens
    • 8.4 Laboratory Tests Associated with Stabilisation Mix Design
      • 8.4.1 General
      • 8.4.2 Lime Demand Test
      • 8.4.3 California Bearing Ratio (CBR)
      • 8.4.4 Unconfined Compressive Strength (UCS)
      • 8.4.5 Repeated Load Triaxial Test
      • 8.4.6 Wheel-tracking Test
      • 8.4.7 Indirect Tensile Modulus
      • 8.4.8 Flexural Modulus, Strength and Fatigue
      • 8.4.9 Capillary Rise
      • 8.4.10 Vertical Saturation
      • 8.4.11 Working Time
      • 8.4.12 Erodibility
      • 8.4.13 Leaching
  • References
  • Appendix A Worked Example of Blending Materials to Achieve Specification Requirements