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Austroads acknowledges the Australian Aboriginal and Torres Strait Islander peoples 

as the first inhabitants of the nation and the traditional custodians of the lands where 

we live, learn and work. We pay our respects to Elders past, present and emerging for 

they hold the memories, traditions, culture and hopes of Aboriginal and Torres Strait 
Islander peoples of Australia.

Austroads acknowledges and respects the Treaty of Waitangi and Maori as the original 

people of New Zealand.
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Housekeeping

Presentation = 40 mins

Question time = 15 mins

Recording Podcast

+
austroads.com.au/webinars

http://www.austroads.com.au/webinars
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About Austroads

The peak organisation of Australasian road transport and traffic agencies

• Transport for NSW

• Department of Transport Victoria 

• Department of Transport and Main Roads Queensland 

• Main Roads Western Australia 

• Department of Planning, Transport and Infrastructure South Australia 

• Department of State Growth Tasmania 

• Department Infrastructure, Transport, Regional Development and Communications Northern Territory 

• Transport Canberra and City Services Directorate, Australian Capital Territory 

• Department of Infrastructure, Transport, Cities and Regional Development 

• Australian Local Government Association 

• New Zealand Transport Agency
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Our Structure



77

Austroads Report

Free online access and PDFs at 

https://austroads.com.au/publications/bridges/ap-r617-20

Create an account and sign-up for RoadWatch publication and 

webinar alerts.

https://austroads.com.au/publications/bridges/ap-r617-20
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Send us your Questions

Type questions here 

Let us know the slide number your question relates to
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Project Overview

Dr Colin Caprani
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Introduction to the Team

Austroads Working Group

• Jewely Parvin, Main Roads Western Australia 

• Alex McAuley, Department of Transport and Main Roads 

Queensland 

• Vincent Tang, Department of State Growth Tasmania 

• Sukie Shen, Department of Transport Victoria

International Advisory Committee

• Professor Jose Campos e Matos, Minho University, 

Guimaraes, Portugal

• Professor Alan O’Connor, Trinity College, Dublin, Ireland
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Project Overview

Aim 

To develop a higher-tier assessment framework using the tenets of reliability and safety engineering for 

adoption in Australia/New Zealand above AS 5100.7

Demonstration 

Step 1: Determine the safety level of “as-built” bridges under their design load as found in the historical codes 

(Code-Implied Safety)

Step 2: Determine the actual safety levels of bridges given current as-of-right freight vehicles and traffic 

(Current Safety)
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Project Purpose
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Safer

$$

Figure 1-1: Rating factors vs Structural Reliability Index Plot 
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Probability-based Bridge Assessment 

Rationale

Probability-based decision processTraditional decision process

Bridge passes

traditional assessment ?

No

Yes

Implement traditional

strengthening project

ok Bridge passes

traditional assessment ?

No

Yes

Probability-based

assessment beneficial?

No

Implement traditional

strengthening project

Yes

No

Probability-based

strengthening project

YesBridge passes probability-

based assessment

ok

ok

• Note, conventional Rating Factor 

is still conducted 

• PBBA is adopted as best practice 

for higher-tier assessments as 

published guidelines of the 

United Kingdom, United States 

and various European countries

• PBBA is the development or 

writing of a bridge or component-

specific code of practice.

Figure 2-1: Probability-based Bridge Assessment
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Structural Reliability Theory 

Professor Mark Stewart
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Send us your Questions

Type questions here 

Let us know the slide number your question relates to
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• Zero risk does not exist

• Uncertainty and Variability:

• Material properties, dimensions, etc.

• Permanent and imposed loads, and how they vary with time

• Accuracy of predicted models (no model is perfect!)

• Limit state function G(X); definition of failure

• e.g., Collapse occurs when Load (S) exceeds Resistance (R) 

• Probability of failure:

• Reliability Index:

( )Pr ( ) 0fp G= X

Structural Reliability Theory

( )G R S= −X

( )1

fp −= −

Figure 2-2: Uncertainty in load and resistance 

Figure A-2: Relationship between  and pf.
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Applications of Structural Reliability

• Structural reliability theory underpins many recent advances in structural and safety engineering 

• Reliability-based calibration of design codes in Europe, U.S., Canada and Australia

• Performance based design of new structures such as the Confederation Bridge (Canada), Great Belt Bridge (Denmark), 

and Messina Strait Bridge (Italy) 

• Service life and safety assessment of existing structures

• Optimal maintenance of ageing or deteriorating structures

• Reliability-based code calibration

• Based on AS5104-2017 and its predecessors

• Concrete Structures AS3600-2018 (Stewart and Foster 2016):

• Increased f = 0.6 to 0.65 for compression

• Increased f = 0.7 to 0.75 for shear

• Increased f = 0.8 to 0.85 for flexure

• Masonry Structures AS3700-2011 (Stewart and Lawrence 2007):

• Increased f = 0.45 to f = 0.75 for compression
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Acceptable Risk: How Safe is Safe Enough?

• Target Reliability Index (βT)

• Australian and International guidance

• AS5104-2017, ISO 2394-2015

• Failure consequences:

• Class 2 - minor 

• Class 3 - losses of societal significance, 

causing regional disruptions and delays in 

important societal services over several weeks. 

Expected number of fatalities fewer than 50 (Example: medium spanning bridges that form part of the HPFV network). 

• Class 4 - Disastrous events causing severe of societal services and disruptions and delays at a national scale.

• Relative cost of safety measures:

• Large for existing bridges if bridge replacement if an existing bridge fails a safety assessment

• Medium if the decision is to restrict vehicle loads rather than recommend full bridge replacement.

• International benchmarking would suggest:

• Annual βT = 4.2 - ultimate bending

• Annual βT = 4.4 - ultimate shear

• Structural element which would be likely to collapse suddenly without warning is designed for a higher level of reliability

Final decision depends on the “risk 
appetite” of asset owner

Relative 
Costs of 
Safety 

Measures

Consequences of Failure

Class 2 (Minor) Class 3 (Moderate) Class 4 (Large)

Large 1.0×10-3 (β = 3.1) 4.8×10-4 (β = 3.3) 1.1×10-4 (β = 3.7)

Medium 1.1×10-4 (β = 3.7) 1.3×10-5 (β = 4.2) 5.4×10-6 (β = 4.4)

Small 1.3×10-5 (β = 4.2) 5.4×10-6 (β = 4.4) 1.3×10-6 (β = 4.7)

Table 2-1: Annual target probability of failure based on economic optimisation (AS 5104-2017)
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Probability-Based Bridge Assessment Framework

Dr Mayer Melhem
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Proposed PBBA Framework

• Adaptation of already well-established international 

PBBA frameworks (DRD, 2004)

• Follow AS 5100.7 flowchart but now considering 

variable uncertainties 

• Selected limit state function: 

• Feedback loop for increasing level of complexity

• Time-invariant recommended reference period t = 1 year 

• Stochastic variables (eg. SLL) must be annually based 

( )R S i slab SIDL LLG R S S S S = − + + +

Section

4.5

Section 4.3

and 4.4

Data collection

Bridge condition

Field geometry

Capacity assessment

Yes

No

Clause

10.3

Clause

10.4

Clause

10.6

Clauses 11

and 12

Clause

13

Clause

14

Clause

10.2

Adequate

capacity?

Load effects and load factors

Fatigue

Bridge assessment

and rating equation

Final bridge assessment.

Impose restrictions if required.

Limit state function

Capacity uncertainty

and model error

NoAcceptable

safety?

Loading uncertainty

and model error

Bridge assessment

and structural reliability index ( )

Higher tier

assessment

Section 4.2

and 4.4

Section

4.1

Yes

Higher tier

assessment
PBBA

benefical?

Yes

Sensitivity analysis

No

Section

4.6

Section

4.7

Figure 3-1: Proposed PBBA Framework 
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PBBA Framework Elements

Figure 5-3: Example Probability Model for R

(1 of 64 fits)

Figure 5-5: Example Probability Model for SLL

(1 of 384 fits)

Probability Modelling 

Basic Variable Symbol Type
Bias
(m/d)

CoV
(s/m)

Source

Concrete compressive 

strength
f'c Log-normal 1.084 0.154 Foster et al., 2016

Prestress Losses ∆P Normal 1 0.30 Mathieu, 1991

Prestress strands cross-

sectional area
Ap Normal 1 0.013 Wisniewski et al., 2012

Steel rebar yield strength fsy Normal 1.15 0.05 Foster et al., 2016

Distance from top fibre to 

rebar layer centroid
ds Normal 0.99 0.04 Foster et al., 2016

Self-Weight Si Normal 1.03 0.08 Rakoczy and Nowak, 2013

Capacity Model Error R Normal 1.06 0.05 Foster et al., 2016

Loading Model Error s Normal 1.00 0.10 JCSS, 2000

Tables 4-1, 4.3, I-1, I-3: Example Probability Distributions 
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PBBA Framework Elements

Structural Reliability Methods 

The algorithm used to calculate the level of safety / reliability index () 

• Project adopted the state-of-the-art reliability methods and software.

Sensitivity Analysis 

The influence of assumptions in probability models is tested

• Enhances confidence and robustness in final output ()

• Guides deeper dives into controlling parameters (e.g. DLA)
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Framework Example Application 

Dr Mayer Melhem
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Send us your Questions

Type questions here 

Let us know the slide number your question relates to
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Framework Example Application 

Design Code 
(Load)

Structural 
Form 

Era No. Sections and Spans

NAASRA 

(MS18)

High-

strength RC 

U-slabs

1953 –

1976 
5

(15’) 4.57 m - (20’) 6.10 m - (25’) 7.62 m 

(30’) 9.14 m - (35’) 10.67 m 

NAASRA 

(MS18)

PSC 

Precast 

Planks

1953 –

1976 
5

(15’) 4.57 m - (20’) 6.10 m - (25’) 7.62 m 

(30’) 9.14 m - (35’) 10.67 m 

NAASRA 

(MS18)

PSC 

I-girders

1953 –

1976 
5

(35’) 10.67 m - (40’) 12.19 m - (45’) 13.72 m 

(50’) 15.24 m - (60’) 18.29 m 

NAASRA 

(T44)

PSC 

I-girders1

1976 –

1992
1 19 m

ABDC (T44)

PSC 

Precast Tee 

Slabs

1992 –

2004
5

(450 mm) 11 m (450 mm) 13 m (550 mm) 

14 m (650 mm) 16 m (750 mm) 19 m

ABDC (T44)
PSC Super-

T Girders

1992 –

2004
1 26.5 m

AS5100 

(SM1600) 

PSC Super-

T Girders2

2004 –

2017 
10

(T1) 15 m (T1) 20 m (T2) 17 m (T2) 23 m (T3) 18 m

(T3) 27 m (T4) 22 m (T4) 32 m (T5) 28 m (T5) 37 m

1 Detailed example seen in Section 5 of report 
2 Designed precisely to the specifications of AS 5100 (2004) for selected limit state. Practical detailing and construction 

staging is not considered and therefore slimmest possible complying designs meeting the code requirements 

Table 3-1: Adopted Bridge Subset (Two-Traffic Lanes)
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Step 1: Code-Implied Safety

Capacity

Capacity Models (Appendix G)

• Bending: Rectangular Stress Block (AS 5100.5 Clause 8.1)

• Shear: Simplified Modified Compression Field Theory (AS 5100.5 Clause 8.2) 
adapted for assessment (Caprani & Melhem, 2020)

Loading

Analysis Models (Appendix H)

• Surface Model: U-Slabs, PSC Planks

• Grillage Model: I-Girders, Precast Tee Slabs, Super-T Girders 

• Provided by TMR: I-Girders (T44) 

Reliability 
Assessment

• Limit State Function ( )R S i slab SIDL LLG R S S S S = − + + +
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Step 1: Code-Implied Safety

Figure 6-3(a): Ultimate Bending Figure 6-3(b): Ultimate Shear
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Vehicle
Fleet

• Higher Mass Limits on West Gate Bridge 

Traffic
Simulation

• Bridge traffic is simulated for 6 flows using in-house BTLS 
software (Figure 3-2, Appendix D) 

Loading

• Influence lines covert loading to load effects realisations 
using in-house BTLS software (Appendix H) 

Reliability
Assessment

• As per Step 1

• Limit State Function: 

Step 2: Current Safety

25,000 vehicles per day (Flat).

25,000 vehicles per day (Low).

50,000 vehicles per day (High).

Figure 3-2: Flow Schemes (Appendix D)

( )R S i slab SIDL LLG R S S S DLA S = − + + + 
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Step 2: Current Safety

Figure 6-8(a): Ultimate Bending (all flows) Figure 6-8(b): Ultimate Shear (all flows)

!!

$$
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Conclusions and Recommendations

Dr Colin Caprani
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Main Findings 

• PBBA: Through adoption of state-of-the-art structural reliability theory, a probability-based bridge assessment 

framework has been developed to provide objective means of determining quantified safety offered by bridges in 

the Australian/New Zealand context. 

• Step 1 indicates the level of safety implied by the historical codes. It is generally larger than typical target levels. 

The probabilistic method reveals a margin of safety available that the otherwise conservative deterministic 

approach does not illuminate, most noticeably for shear. 

• Step 2 infers the current level of safety for HML traffic streams of two-traffic lane bridges. The level of safety is 

reduced for bridges of lower design traffic load models, especially for bending. For shear, 75% of bridges that 

failed a deterministic assessment (RF < 1) are shown to have a reliability index higher than that typically 

acceptable – for these bridges a margin of safety is still available.
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Limitations

• Other Modes of failure (eg. fatigue), other traffic flows schemes, different number of traffic lanes, skew, 

specific restricted access routes, and other bridge loads (e.g. thermal, settlement).

• Use of WIM data from just one site (West Gate Bridge, Melbourne) as the basis for the traffic load modelling, which 

is shown to be a most influential factor in assessing bridge safety.

• No substructure assessments, which would require highly site- or region-specific consideration of the uncertainty 

in ground conditions and river flows. 

• Only single components considered, rather than the entire bridge system, which typically has redundancies.
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Further Research 

• Incorporations of time-dependent factors like corrosion and 

the structure condition, as well as traffic growth, including 

vehicle modal shifts, requiring appropriate statistical models.

• The probabilistic dynamic interaction of the Australasian 

vehicle fleet on the bridge stock, which is shown through the 

importance coefficients that this is a key parameter. 

• The updating of reliability assessments using structural health 

monitoring (SHM) outputs and using burgeoning Value of 

Information approaches.

Figure 6-10: Relative Importance Example Results 
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Final Remarks

• Take home message: Rating factors are not the final 

instrument to measure safety. Instead, the probability of 

failure (reliability index) is more robust. 

• There is enormous potential benefit in the use of 

probability-based assessment in Australia/New Zealand as 

a higher-tier form of assessment. 

• PBBA approach is now common internationally. 

• It reveals the true levels of safety and provides 

quantitative data for further asset management, including 

risk quantification, and prioritisation of rehabilitation 

measures. 

• Through AS5104, this higher-tier form of assessment can 

be conducted in Australasia for optimal bridge safety and 

cost outcomes.
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