Unit 8: Intelligent Transport Systems

Module 8-2

Managed Motorways – Operational Principles, Managed Motorway Toolkit

Traffic Management Training Module

2

Today's presenter

Dr. Mohsen Ramezani

Lecturer School of Civil Engineering, The University of Sydney

P: +61 293 512 119

E: mohsen.ramezani@sydney.edu.au

Outline of this Module

- Ramp Metering
- Variable Speed Limits (VSL)

Section 8 of Guide to Traffic Management Part 2: Traffic Theory Concepts and Section 8 of Guide to Traffic Management Part 9: Transport Control Systems – Strategies and Operations Austroads (2020)

Preliminaries

 Motorways were designed with sufficient capacity for virtually unlimited mobility

Preliminaries

- Ever increasing demand in reality
- Congestion: recurrent and non-recurrent
- Managed motorways goal: operate motorway networks optimally

5

Managed Motorways

- Inflow Control
 - Ramp metering
- Link Control
 - Variable speed limits
 - Tidal (reversible) lanes
 - Special vehicle lanes and shoulder running
- Driver Information and Guidance
 - VMS information (e.g. congestion warning, route recommendation)

Ramp Metering

Preliminaries

Austroads

Ramp metering

- Control traffic flow into the motorway by means of traffic signals on the entry ramps
- Regulate mainline traffic flow below the operational capacity

M4 Smart Motorway

Ramp Metering

Benefits of ramp metering

Austroads

NIN,

10

Ramp Metering

Benefits of ramp metering

Source: VicRoads (2013).

Ramp Metering

Benefits of ramp metering

Ramp Metering

- Implementation with traffic lights
 - one car at a time (control via red phase duration)
 - fixed traffic cycles
- Intermediate possibilities:
 - n cars at a time (n = 2, 3,...)
 - variable traffic cycles (short when possible, long when necessary)

See Section 10.6 of Guide to Traffic Management Part 10: Transport Control – Types of Devices Austroads (2020)

ALINEA

- real-time operation (traffic-responsive)
- keep traffic conditions close to pre-specified set values
- smooth stabilisation around \hat{o}
- simple: no switching, only \hat{o} (and K_R) prespecified
- Note: o_{cr} less sensitive than q_{cap}

ALINEA

Issues

- Real-time estimation of critical occupancy o_{cr}
- Ramp queue length estimation
- Ramp queue control
- Random-location bottleneck

ALINEA

- Boulevard Périphérique (Paris)
 - cycle time implementation (C = 40s)
 - $o_{cr} \approx 31\%; \hat{o} = 29\%$
- A10 West Motorway (Amsterdam)
 - one-car-per green
 - $o_{cr} \approx 20\%$; $\hat{o} = 18\%$
- M8 East Motorway (Glasgow)
 - very short cycles (C = 20s)

• $\hat{o} = 26\%$

Coordinated Ramp Metering

Coordinated Ramp Metering

• Example:

Melbourne's M1 Monash freeway with 64 ramps using HERO

Managed motorway

Flow breakdown avoided

Ramp signals with HERO control:

- prevent flow breakdown
- maintain optimum throughput
- maintain optimum speed
- facilitate flow recovery.

110

Variable Speed Limits

Variable Speed Limits

Source: Austroads (2020)

- When VSL is activated at under-critical densities, it can have an adverse impact on traffic efficiency (i.e. increased travel times).
- When VSL activated at critical and over-critical densities, it can help delay the onset of flow breakdown, but generally has limited ability to prevent flow breakdown.
- VSL at critical levels of operation provides a reduction in the speed differentiation of vehicles (e.g. homogenisation of speeds), which can result in improved flow stability.

Q1. True/False: Variable speed limit can improve safety and traffic flow performance simultaneously.

- A. True
- B. False

Q2. True/False: ALINEA is a coordinated ramp metering method.

- A. True
- B. False

Q1. True/False: Variable speed limit can improve safety and traffic flow performance simultaneously.

True

Q2. True/False: ALINEA is a coordinated ramp metering method.

False

References

Austroads (2020). Guide to Traffic Management Part 2: Traffic Theory Concepts. AGTM02-20, Austroads, Sydney, NSW. https://austroads.com.au/publications/traffic-management/agtm02/media/AGTM02-20-Part-2-Traffic-Theory-Concepts.pdf

Austroads (2020). Guide to Traffic Management Part 9: Transport Control Systems – Strategies and Operations. AGTM09-20, Austroads, Sydney, NSW. <u>https://austroads.com.au/publications/traffic-management/agtm09/media/AGTM09-</u> 20 Part 9 Transport Control Systems Strategies and Operations.pdf

Thank you for participating

