Unit 4: Transport Operations Control Strategies and Systems

Module 4-2

Signalised Intersections – Operations and Control Strategies

Traffic Management Training Module

2

Today's presenter

Dr. Mohsen Ramezani

Lecturer School of Civil Engineering, The University of Sydney

P: +61 293 512 119

E: mohsen.ramezani@sydney.edu.au

Outline of this Module

- Intersection Selection
- Types of Traffic Signal Timing Methods
- Fixed-Time Signal Timing
- Movements and Phase
- Pedestrian
- Coordination

Section 3 of Guide to Traffic Management Part 6: Intersections, Interchanges and Crossings Management and Section 6 of Guide to Traffic Management Part 9: Transport Control Systems – Strategies and Operations Austroads (2020)

Perspective

You can look at practically any part of anything manmade around you and think 'some engineer was frustrated while designing this.' It's a little human connection. (http://xkcd.com/277)

- Safety of all road users (light and heavy vehicles, motorcyclists, pedestrians and cyclists)
- Traffic volumes, capacity, delay and level of service, both generally and for specific road users
- Planning policy and objectives
- Compatibility with adjacent intersection treatments
 - o link to network operations; vary by time of day to promote certain activities or modes
- Topography at the site
- Speed environment

Section 3.3 of Guide to Traffic Management Part 6: Intersections, Interchanges and Crossings Management Austroads (2020)

Intersection Selection

- The natural and built environment (including rural/urban, number of legs and through lanes, available space, adjacent property access and land use)
- Road hierarchy
- Public transport
- Community views

Signalised Intersections

Advantage:

- Provide orderly movement of traffic
- Reduce frequency and severity of certain form of crash
- Coordinate smooth and continuous traffic movement
- Interrupt heavy traffic at intervals to permit other traffic

Disadvantage:

- May increase total intersection delay and fuel consumption (off-peak period)
- Increase in frequency of rear-end collisions
- Improperly timed, cause excessive delay, increase driver irritation

Traffic Signal Timing

Fixed-time

• Repeat a preset fixed cycle and signal plan (not necessarily diurnal)

<u>Actuated</u>

- Respond to the presence of vehicles and pedestrians
- Need to be used in conjunction with vehicle detectors
- Semi-actuated
- Fully actuated

Schematic Architecture

Traffic signal system process overview

Basic Definitions

Movements

- vehicles turning left
- vehicles travelling straight through
- vehicles turning right

Phase

- Interval which the controller uses to share time among various compatible movements
- A phase may consist of a set of non-conflicting movements or certain conflicting movements where the priority is defined by traffic regulations

Pedestrian

Pedestrian protection

- Pedestrians are normally grouped with vehicle movements to form a phase
- Pedestrian movement run concurrently with parallel vehicle movements when appropriate
- Where turning vehicles can cross a pedestrian movement, it may be necessary to provide pedestrian protection

Phase

Phase

Three phase system, leading right turn phasing on east-west road

Three phase system, lagging right turn phasing on east-west road

Phase B

Phase A

Phase C

Source: Austroads (2020)

Cycle (cycle length or cycle time)

• Time needed for a complete sequence of signal phases

Pedestrian

Source: Austroads (2020)

16

Fixed-time Signal Control

Fixed-time operations have constant (fixed):

- Cycle length
- Phase sequence
- Green time
- Change interval (yellow and all red)

- Simpler and less expensive than other options
- Less efficient where demand fluctuates

Coordination

Coordination

Q1. For the intersection in the figure, how many phase at least are required to accommodate all the car movements with dedicated turns?

A. 2

Time to Reflect

B. 4

C. 5

Q1. For the intersection in the figure, how many phase at least are required to accommodate all the car movements with dedicated protected turns?

A. 2

B. 4

C. 5

Explanation:

Answer B is correct!

Time to Reflect

Evolopoti

References

Austroads (2020). Guide to Traffic Management Part 2: Traffic Theory Concepts. AGTM02-20, Austroads, Sydney, NSW. https://austroads.com.au/publications/traffic-management/agtm02/media/AGTM02-20-Part-2-Traffic-Theory-Concepts.pdf

Austroads (2020). Guide to Traffic Management Part 9: Transport Control Systems – Strategies and Operations. AGTM09-20, Austroads, Sydney, NSW. <u>https://austroads.com.au/publications/traffic-management/agtm09/media/AGTM09-</u> 20 Part 9 Transport Control Systems Strategies and Operations.pdf

Thank you for participating

