Unit 3: Transport Study, Traffic Data and Analysis Methods

Module 3-3

Capacity Analysis

Traffic Management Training Module

Today's presenter

Dr Neeraj Saxena

Senior Professional Leader Australian Road Research Board (ARRB)

P: +61 438 829 440

E: Neeraj.Saxena@arrb.com.au

Outline of this Module

- Capacity Analysis
- Un-interrupted flow facilities
- Interrupted flow facilities
- Intersection capacity analysis

Capacity Analysis

Capacity: The maximum flow of vehicles a road can accommodate (HCM, 2010)

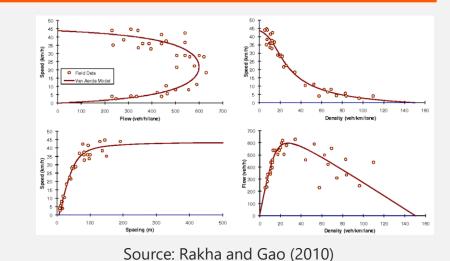
Capacity Analysis:

- A quantitative technique for measuring the effectiveness of existing transport facilities in moving traffic and people
- Fundamental to the planning, design and operation of roads and transport services
 - Additional traffic lanes
 - Signal timing adjustments

Capacity Analysis

Application:

- Un-interrupted flow facilities
 - No external factors interrupting traffic flow stream. E.g. Highways, rural roads
- Interrupted flow facilities
 - Movement of traffic is interrupted due to intersections, crossings, etc. E.g. Urban arterials
- Intersections
 - Where turning movements are allowed. E.g. signalised and unsignalised


Un-interrupted Flow Facilities

Single-lane Roads

Peak Flow Capacity (using Greenshields Model)

 $C = \frac{v_f \cdot k_j}{4}$

See Section 4.1,

Austroads (2020)

- Varies between 1000 and 4800 pc/h/ln, mostly within 1500 to 2400 pc/h/ln
- Capacity reduction due to presence of heavy vehicles $C = 1800 \cdot f_W \cdot f_{HV}$

Austroads

Two-lane Roads

See Section 4.2, Austroads (2020)

- Roads with one-lane of travel in each direction
- Generally include rural roads and highways
- Classified into three categories

As per HCM (2016):

- Capacity of a two-lane highway is **1700 pc/h per direction** of travel and is nearly independent of the directional distribution of traffic
- For extended lengths of two-lane highway, the capacity will not exceed 3200
 pc/h for both directions of travel combined.

Multi-lane Roads

• Classified as undivided and divided

Free-flow speed	Criteria	А	в	с	D	E
100 km/h	Maximum density (pc/km/ln)	7	11	16	22	25
	Average speed (km/h)	100.0	100.0	98.4	91.5	88.0
	Maximum volume to capacity ratio (v/c)	0.32	0.50	0.72	0.92	1.00
	Maximum service flow rate (pc/h/ln)	660	1080	1550	1980	2200
	Maximum density (pc/km/ln)	7	11	16	22	26
90 km/h	Average speed (km/h)	90.0	90.0	89.8	84.7	80.8
90 Km/n	Maximum volume to capacity ratio (v/c)	0.30	0.47	0.68	0.89	1.00
	Maximum service flow rate (pc/h/ln)	600	990	1430	1850	2100
	Maximum density (pc/km/ln)	7	11	16	22	27
80 km/h	Average speed (km/h)	80.0	80.0	80.0	77.6	74.1
80 km/n	Maximum volume to capacity ratio (v/c)	0.28	0.44	0.64	0.85	1.00
	Maximum service flow rate (pc/h/ln)	550	900	1300	1710	2000
70 km/h	Maximum density (pc/km/ln)	7	11	16	22	28
	Average speed (km/h)	70.0	70.0	70.0	69.6	67.9
	Maximum volume to capacity ratio (v/c)	0.26	0.41	0.59	0.81	1.00
	Maximum service flow rate (pc/h/ln)	290	810	1170	1550	1900

See Section 4.3, Austroads (2020)

Source: Austroads (2020)

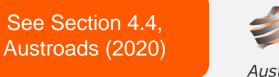
FFS = 120 km/h							
Maximum density (pc/km/ln)	7	11	16	22	28		
Minimum speed (km/h)	120.0	120.0	114.6	99.6	85.7		
Maximum (v/c)	0.35	0.55	0.77	0.92	1.00		
Maximum service flow rate (pc/h/ln)	840	1320	1840	2200	2400		
FFS = 110 km/h							
Maximum density (pc/km/ln)	7	11	16	22	28		
Minimum speed (km/h)	110.0	110.0	108.5	97.2	83.9		
Maximum (v/c)	0.33	0.51	0.74	0.91	1.00		
Maximum service flow rate (pc/h/ln)	770	1210	1740	2135	2350		
FFS = 100 km/h							
Maximum density (pc/km/ln)	7	11	16	22	28		
Minimum speed (km/h)	100.0	100.0	100.0	93.8	82.1		
Maximum (v/c)	0.30	0.48	0.70	0.90	1.00		
Maximum service flow rate (pc/h/ln)	700	1100	1600	2065	2300		
FFS = 90 km/h							
Maximum density (pc/km/ln)	7	11	16	22	28		
Minimum speed (km/h)	90.0	90.0	90.0	89.1	80.4		
Maximum (v/c)	0.28	0.44	0.64	0.87	1.00		
Maximum service flow rate (pc/h/ln)	630	990	1440	1955	2250		

Freeways

Criteria

 Divided road with two or more lanes per direction with no at grade intersections and full access control

D

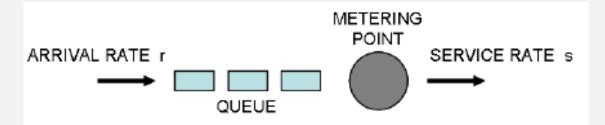

LOS

C

As per Vicroads (2013):

At 100 km/h free-flow speed,

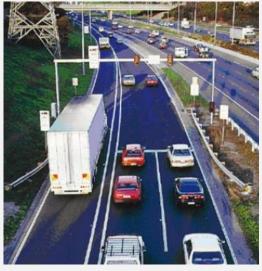
- 15% reduction in capacity when traffic comprises 10% HV
- Maximum flow can be maintained ٠ through ramp metering

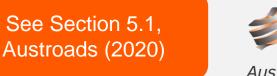


Interrupted Flow Facilities

Metered Flow

- Metering the flow of vehicles passing through a given point
- E.g. Ramp meters
- Capacity determined using Queueing Theory




Source: Austroads (2016)

Arrival Rate (r): Number of arrivals per unit time and its distribution

Service Rate (*s*): Number of departures per unit time and its distribution Metering Point: Number of service channels. E.g. number of lanes

Queue: Vehicles waiting to be served. Arrival is generally FIFO

Metered Flow

- Under stable traffic conditions:
- C = 3600.s
- Assuming Poisson arrival and negative exponential service rates, we can calculate:
- Utilisation factor $\rho = r/s$
- Mean queue length $n_q = \rho/(1-\rho)$
- Mean delay $w_m = n_q/r$

Urban Arterials

Typical mid-block capacity of urban roads

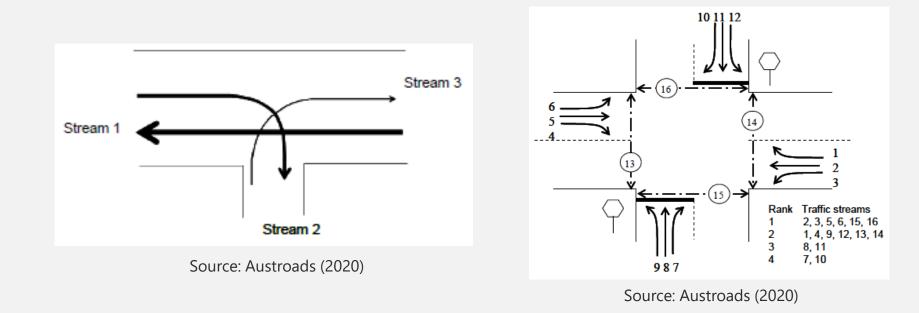
Type of lane	One-way mid-block capacity (pc/h)				
Median or inner lane					
Divided road	1000				
Undivided road	900				
Middle lane (of a 3 lane carriageway)					
Divided road	900				
Undivided road	1000				
Kerb lane					
Adjacent to parking lane	900				
Occasional parked vehicles	600				
Clearway conditions	900				

Source: Austroads (2020)

Peak period traffic volumes can be increased between **1200** and **1400 pc/h/ln** if:

- Control or absence of parking
- Good signal coordination
- Control or absence of right turns

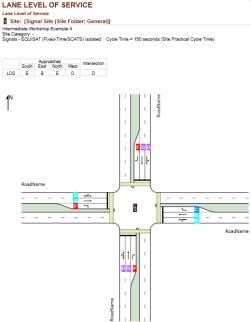
Intersection Capacity Analysis


Unsignalised Intersections

See Section 6.1, Austroads (2020)

Capacity is calculated based on the total conflicting flow

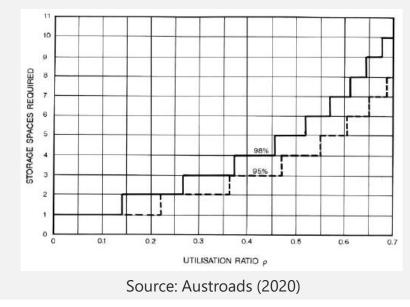
Determining Conflicting Streams


Unsignalised Intersections

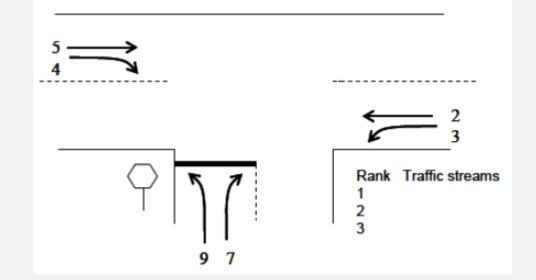
In Australia and New Zealand, the analysis of unsignalised intersections should be evaluated using SIDRA Intersection (Akçelik and Associates 2011) or an equivalent program. (Austroads, 2020)

Default parameter values used in SIDRA Intersection

Standard driving on the left model								
	2-lane major road			4	4-lane major road			
STOP sign	to	tr	s	to	tr	s		
Minor road: left turn	4.5	2.5	1440	5.0	3.0	1200		
through	5.0	3.0	1200	6.5	3.5	1029		
right turn	5.5	3.5	1029	7.0	4.0	900		
Right turn from major road	4.0	2.0	1800	4.5	2.5	1440		
GIVE-WAY / YIELD sign	tc	tr	s	tc	tr	s		
Minor road: left turn	4.0	2.2	1636	4.5	2.7	1333		
through	4.5	2.7	1333	6.0	3.2	1125		
right turn	5.0	3.2	1125	6.5	3.7	973		
Right turn from major road	4.0	2.0	1800	4.5	2.5	1440		


Source: SIDRA Intersection (2020)

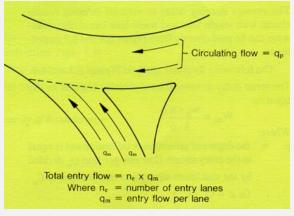
Source: Austroads (2020)


Storage Requirements: The storage length required for a right-turn movement <u>Steps:</u>

- 1. Determine the minor stream movement lane volume (r_m)
- 2. Determine the saturation flow (s) for the minor stream movement
- 3. Calculate the utilisation rate ($\rho = r_m/s$)
- 4. Look up the plot

1. Which traffic movements come under Rank 1? Mention all that apply.

Answer:


Movements 2, 3 and 5

Through (straight) and left traffic movements on the major road have the highest priority.

Roundabouts

Capacity is determined using Gap Acceptance Theory

Source: HCM (2016)

- q_p = circulating flow (veh/s)
- t_a = critical acceptance gap (s)
- t_f = follow-up headway (s)
- τ = min headway in circulating flow (s)

According to Austroads (2020):

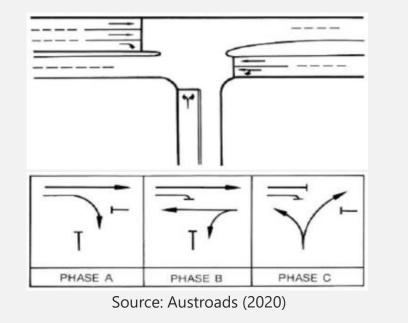
- The capacity model in SIDRA Intersection has been calibrated using field data in Australia
- It is not recommended that the HCM 2016 procedure for roundabout analysis be used at this time.

Capacity per lane for an approach (veh/hr/ln)

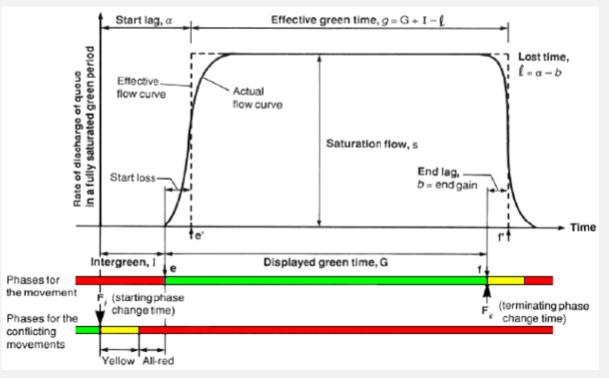
$$C_{e} = \frac{3600q_{p}(1 - q_{p}\tau)\exp(-q_{p}(t_{a} - \tau))}{1 - \exp(-q_{p}t_{f})}$$

Roundabouts

See Section 6.2, Austroads (2020)


Source: Austroads (2020)

Source: Austroads (2020)


Signalised Intersections

Capacity calculation is based on individual traffic movements (or lane groups) and approaches, rather than the intersection as a whole

Basic Capacity Model

Source: Austroads (2020)

Signalised Intersections

Capacity Analysis:

- Capacity of a movement: C = Sg/c
- Green time ratio: u = g/c
- Flow ratio: y = Q/S
- Movement degree of saturation: x = Q/C
- For uncongested movement: x < 1

- *S* = saturation flow rate (veh/h)
- g = effective green time per cycle (s)
- c = cycle time (s)
- Q = arrival flow (veh/h)

Environment class	Basic saturation flow in tcu/h				
Environment class	Lane type 1	Lane type 2	Lane type 3		
А	1850	1810	1700		
В	1700	1670	1570		
С	1580	1550	1270		

2. The saturation flow is the number of vehicles that would cross the intersection if the approach signal is left green for....

- A. 60 seconds B. Cycle time
- C. 3600 seconds D. None of these

Answer:

Option C is correct!

Saturation flow is the number of vehicles that pass the intersection if the approach signal is left green for 1 hour.

References

Akçelik and Associates (2011). SIDRA Intersection User Guide, Akçelik and Associates Pty Ltd, Melbourne, Vic.

Austroads (2016). Guide to Smart Motorways. AGSM16, Austroads, Sydney, NSW. Available at: <u>https://austroads.com.au/publications/traffic-management/agsm</u>. Accessed: 3 May 2020.

Austroads (2020). Guide to Traffic Management Part 3: Traffic Studies and Analysis Methods. AGTM03-20, Austroads, Sydney, NSW. Available at: https://austroads.com.au/publications/traffic-management/agtm03. Accessed: 4 May 2020.

Rakha, H.A., and Gao, Y. (2010). Calibration of Steady-state Car-following Models using Macroscopic Loop Detector Data.

SIDRA Intersection (2020). SIDRA Intersection Version 9. Available at: <u>http://www.sidrasolutions.com/Software/INTERSECTION/Version_9</u>. Accessed: 6 May 2020.

Transportation Research Board (2016). Highway Capacity Manual: HCM 2016, TRB, Washington, DC, USA.

VicRoads (2013). Managed Freeways: Freeway Ramp Signals Handbook, VicRoads, Kew, Vic.

Tutorial available for this learning module!

Thank you for participating

