

Traffic Management Training Module

Today's presenter

Jonathan Ramsay

Research Assistant
Australian Road Research Board (ARRB)

P: +61 403 139 364

E: Jonathan.Ramsay@arrb.com.au

Outline of this Module

- Traffic studies and surveys
- Sources of traffic data
- Evaluation and analysis of traffic data

Traffic Studies and Surveys

Traffic Studies

"If you cannot tell the system performance yesterday, you cannot hope to manage your system today"

Data is important to measure system performance

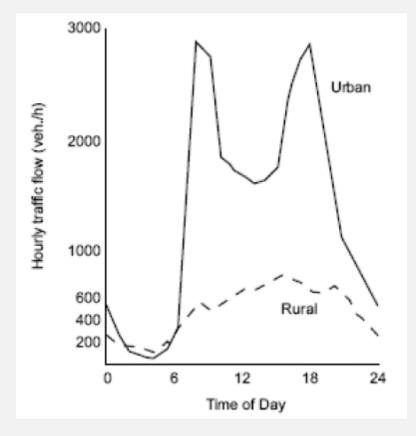
- A traffic engineer's laboratory is the surrounding roadway system (Ramezani 2018)
- What types of data can we collect?

Source: Ramezani (2018)

Survey Types

Point	Linear	Area
Traffic volume	Travel time	Origin/destination surveys
Speed	Delay	Noise, fuel & emissions
Vehicle mass/dimensions	Queuing	Parking data
Pedestrians		Traffic generation
Cyclists		

See Section 3.5.1, Austroads (2020)



Traffic volume is an expression of the flow rate in vehicles per unit time

- vehicles/hour or vehicles/day
- Further classification into modes and people is common

Applications of traffic volume surveys:

- Facility planning, design, capacity
- Monitor variation and trends of traffic flow over time
- Assist in road classification
- Validating predictions from traffic forecasting models
- Estimating loading on pavements and bridges
- Distribute travel demand in a network

Typical hourly traffic volume. Source: Austroads (2020)

Speed

Applications of speed surveys:

- Determining the need for traffic control devices (Austroads 2020)
- Assisting in road design
- Evaluating the effectiveness of speed limits
- Finding relationships between speeds and crashes
- Evaluating the change in traffic conditions before and after treatments are applied

Time mean speed

$$\mathsf{Speed} = \frac{\sum_{i} V}{n}$$

See Section 3.5.2, Austroads (2020)

Space mean speed

$$Speed = \frac{\sum_{i} distance_{i}}{\sum_{i} time_{i}}$$

See Section 3.5.5, Austroads (2020)

Increasing trend to provide for pedestrians and cyclists

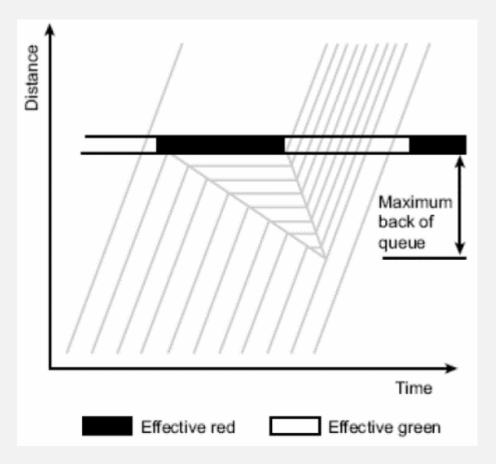
- Bicycles are defined as vehicles and can be surveyed in a similar manner
- Best surveyed in a constrained environment similar to a road such as a footpath
- Pedestrians come in different definitions (parent with a child, pedestrians with disabilities)

Application of pedestrian and bicycle surveys:

Assists in developing more active transport initiatives

Source: Next City (2015)

Travel Time, Delay and Queuing

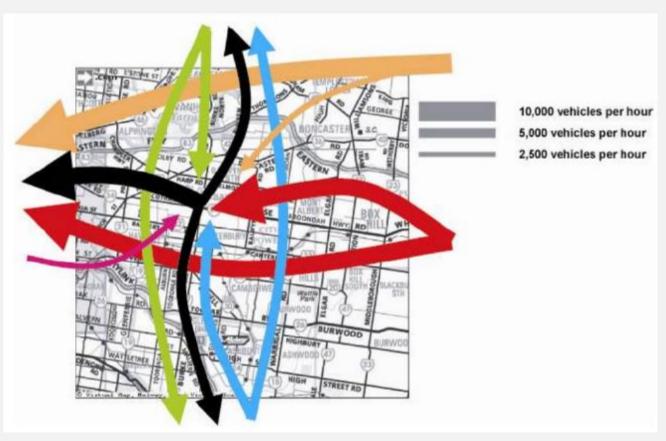


Travel time and delay surveys can be completed simultaneously

A vehicle is in a queue when it is dictated by the actions of the vehicle or traffic ahead of it

Applications:

- Measure system performance
- Evaluate before-and-after effects of traffic improvements
- Identify locations and causes of congestion
- Determine the need for traffic signals
- Develop optimum timing sequences at traffic signals



Typical time-space diagram. Source: Austroads (2020)

Origin-Destination (O-D)

Basic O-D trip graphic. Source: Austroads (2020)

Range from simple studies that determine the amount of traffic passing through an area to metropolitan wide surveys

Applications:

- Provide valuable information on where motorists desire to travel
- Provides data on traffic diversion due to new traffic management schemes

Noise, Fuel and Emissions

Noise is defined as unwanted sound and road traffic is the biggest contributor to community noise levels

Surveys types include

- Decibel readings
- Community reaction surveys

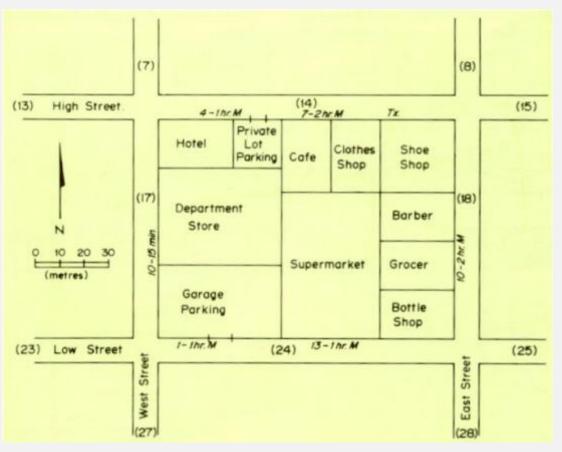
Fuel and Emissions are a major issue facing the current climate
Survey types include

- Individual vehicle-based surveys
- Area-wide surveys

Noise, fuel and emissions results are often presented as indexed values

Parking Surveys

See Section 3.5.8, Austroads (2020)



Parking Supply

- Number and location of parking spaces
- Type of car park (kerbside, off-street)
- Parking restrictions/fees

Parking Demand

- Number of parking events over an allotted time
- Duration and turnover rates
- Trip purpose

Typical parking inventory map. Source: Austroads (2020)

Traffic Generation Surveys

Land use developments must undergo traffic generation surveys

- Shopping centres
- Sports and recreational centres
- Residential complexes
- Office blocks

Applications:

- Identifying road networks to upgrade if high traffic generation rates are found
- Used in transport impact assessments (TIA)

See Section 3.5.9, Austroads (2020)

Sources of Traffic Data

Sources of Traffic Data - Examples

Traffic volume, speed

Axle detector. Source: ARRB (2017)

Mass

WIM - ARRB CULWAY Source: ARRB (2017)

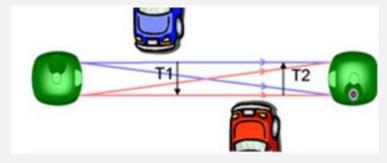
Traffic volume, travel time

AVI. Source: Infrastructure magazine (2017)

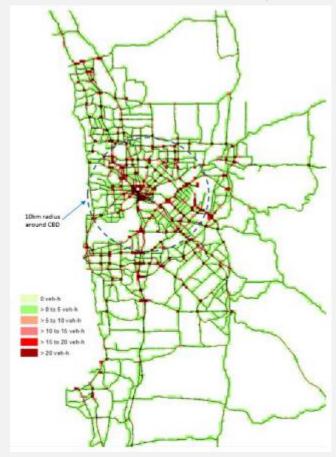
Traffic volume, speed, pedestrian, bicycle

VIPS. Source: ARRB (2017)

Sources of Traffic Data - Examples


Speed

Laser speed measurement device. Source: ARRB (2017)


Traffic volume, speed

TIRTL unit and operational graphic. Source: CEOS (n.d.)

Speed, travel time, delay, OD

Probe data – average hourly delay heat map. Source: Bennett, Espada and Weeratunga (2016)

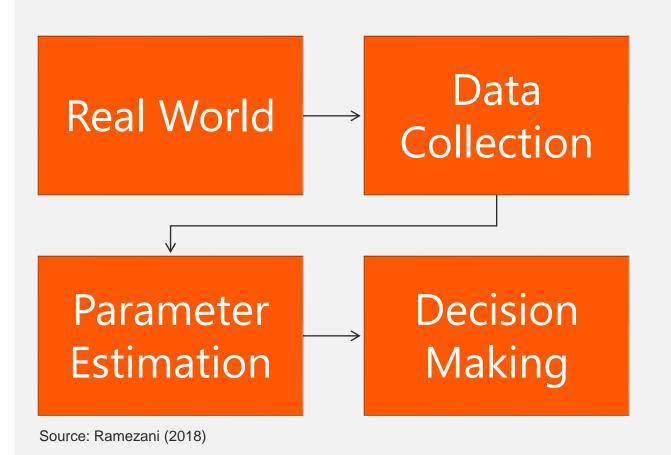
Sources of Traffic Data - Summary

Source	Type of survey data	Source	Type of survey data
Infrared puffin	Traffic volume, pedestrians, bicycles	Laser speed measurement device	Speed
Piezo-cable	Traffic volume, mass, pedestrians, bicycles	Inductive loops	Traffic volume, parking occupancy, bicycles
AVI (automatic vehicle identification)	Traffic volume, speed, travel time	VISTA (or equivalent) survey	Pedestrians, cyclists, OD, noise, trip generation
Axle detectors	Traffic volume, speed, bicycles	Microphone	Noise
VIPS (video image processors)	Traffic volume, speed, pedestrian, bicycle	Stud	Future development

Sources of Traffic Data - Summary

Source	Type of survey data	Source	Type of survey data
TIRTL detectors	Traffic volume, speed	Manual count	Pedestrians, bicycles, parking
Probe	Speed, Travel time, OD	Cordon count	OD, Parking
Bluetooth	Pedestrian, Travel time, OD	Dynamometer	Air pollution
GPS	Travel time, speed, pedestrians, bicycle	Weigh-in-motion (WIM)	Mass
Public Transport Ticketing system	OD	On-board Mass (OBM)	Mass

Future Developments


- Private sector collect data and distribute to public (PPP relationship)
- Complete data coverage including weekends and public holidays (Austroads 2020)
- Vehicle tracking technology is increasing the range of data available
- Data fusion from multiple sources will build the traffic data network
- Customer profiling
- Data will continually be integrated with routing services such as Google, Waze
- Increased number of metrics → temperature, congestion, delays, cost

Evaluation and Analysis of Traffic Data

Evaluation and Analysis

Before decision making can occur, data must be analysed

Statistics

- Central tendency (mean, median, mode)
- Variance
- Error
- Bias

See Section 3.2.9, Austroads (2020)

Guidelines

- Clearly outline purpose and scope
- Cater for the audience
- Use maps and graphs (as figure right)
- Separate data into spatial and temporal classifications
- Record assumptions and adjustments
- Outline the procedures for collection, analysis and reporting

Traffic volume map. Source: Google (2017)

Quiz Questions

Time to Reflect

Q1. What are the three major categories of traffic data collection?

- A. Stationary, mobile, satellite
- B. Spot, moving, range
- C. Point, Linear, Area

Answer C is correct!

Time to Reflect

Q2. What types of data can a TIRTL detector obtain?

- A. Travel time and trip generation
- B. Traffic volume and speed
- C. Pedestrian and cyclist

Answer B is correct!

References

Austroads (2020). Guide to Traffic Management Part 3: Traffic Studies and Analysis Methods, AGTM03-20, Austroads, Sydney, NSW, available at: https://austroads.com.au/publications/traffic-management/agtm03, accessed: 27 April 2020.

Bennett, P, Espada, I & Weeratunga, K (2016). Network performance analysis for Perth congestion response, ARRB conference, Melbourne, VIC, ARRB Group, Vermont South, Vic, 13 pp.

CEOS n.d. TIRTL, web page, CEOS, Melbourne, VIC, available at: http://www.ceos.com.au/index.php/products/tirtl?id=10. Accessed: 29 April 2020

Infrastructure Magazine (2018). Scenario 2028 – the tolling industry in ten years, Infrastructure Magazine, available at: https://infrastructuremagazine.com.au/2018/06/25/scenario-2028-the-tolling-industry-in-ten-years/. Accessed: 29 April 2020.

ARRB (2017). Session 2 Road use data collection (1), ARRB Group, Port Melbourne, VIC.

Next City (2015). Closing Streets to Cars for Walkers and Cyclists Is Getting More Popular by the Minute, available at: https://nextcity.org/daily/entry/san-jose-street-event-new-york-central-park-closed-to-cars. Accessed 24 June 2020.

Ramezani (2018). Traffic States and Measurement, CIVL5702 Traffic Engineering lecture slides, University of Sydney, Sydney, NSW, accessed: 04 May 2020.

Thank you for participating

