

Australia and New Zealand Roads Capability Analysis 2017-2027

6 September 2018



## Today's moderator



**Eliz Esteban** 

Communications Officer Austroads

P: +61 2 8265 3302

E: eesteban@austroads.com.au



#### **About Austroads**



#### The peak organisation of Australasian road transport and traffic agencies

- Roads and Maritime Services New South Wales
- Roads Corporation Victoria
- Department of Transport and Main Roads Queensland
- Main Roads Western Australia
- Department of Planning, Transport and Infrastructure South Australia
- Department of State Growth Tasmania
- Department of Infrastructure, Planning and Logistics Northern Territory
- Transport Canberra and City Services Directorate, Australian Capital Territory
- Department of Infrastructure, Regional Development and Cities
- Australian Local Government Association
- New Zealand Transport Agency

### Our structure





## Housekeeping





Presentation = 35 mins

Question time = 15 mins









www.austroads.com.au/webinars

### GoToWebinar





Please type your questions here

Let us know the slide number your question relates to

### Austroads report





Download from Austroads Website:

https://austroads.com.au/publications/agencymanagement/ap-r574-18

## Today's presenters



#### **Adrian Hart**

Associate Director, Building and Construction **BIS Oxford Economics** 

P: +61 2 8458 4233

E: ahart@bisoxfordeconomics.com.au



Associate Director, Construction Consulting **BIS Oxford Economics** 

P: +61 2 8458 4251

E: rlogie@bisoxfordeconomics.com.au





# Agenda



| Topic                                           | Presenter                   |  |  |
|-------------------------------------------------|-----------------------------|--|--|
| Project Background and Introduction             | Adrian Hart                 |  |  |
| State of Play and Outlook for Roads Activity    |                             |  |  |
| Quantitative Modelling Results for Roads Skills |                             |  |  |
| Industry Perspectives and Challenges            |                             |  |  |
| Report Recommendations                          |                             |  |  |
| Q&A                                             | Adrian Hart & Rachael Logie |  |  |



Project Background and Introduction

Adrian Hart



### Introduction to team



#### **Project Team**



Tracy Jenkinson Austroads Project Manager



Adrian Hart
BIS Oxford Economics



Rachael Logie
BIS Oxford Economics

#### **Review Team**



Austroads Working Group Group



Stakeholders-Road and Traffic Authorities



**Austroads Board** 

## The Project Team





#### Research Goals





- Workforce capability analysis 10 years
- Engineering and non-engineering skills

- Quantitative modelling
- Qualitative insights from industry

- Challenges and Risks
- Recommendations

## Roads Workforce Capability



- 2006 Initial workforce capability analysis by BIS Shrapnel
- 2009 Updated study by BIS Shrapnel
- 2013 Updated study by BIS Shrapnel
- 2017-18 This expanded study by BIS Oxford Economics
- 2016 Intelligent Mobility Skills Strategy by Transport Systems Catapult (UK)
- 2017 Highways Skills Shortage; the Ticking Time Bomb by Highways UK
- 2017 Construction Delivery Assessment by BIS Oxford Economics for iNSW
- 2017 Transport Skills Forecast by Transport and Logistics IRC

## Our Approach in the 2017-18 Study



- Need to think beyond traditional engineering skills
- Need to consider technological trends over the next 20 years
- Implications for the role and function of existing roads agencies
- Quantitative analysis to estimate the potential size of the challenge
- Qualitative analysis to pinpoint:
  - Where skills gap may already exist
  - Where the risks to capability will likely arise
  - Future skills that may be required
  - Impact of new technologies on skills demand and requirements

## Key Findings



- Roads agencies facing 'triple threat' to workforce capability
  - 1. A record program of infrastructure spending forecast
  - Maturing technologies will impact on type of skills demanded and funding
  - 3. The role and function of roads agencies is likely to change
- Agencies are already facing skills shortages
- Agencies face stiff competition for traditional and non-traditional skills
- Agencies will have time to adapt to some technological developments BUT
- Much needs to be done now to put capability on a sustainable path



State of Play and Outlook for Roads Activity
Adrian Hart



#### Economic Environment – Australia



- Australian economy has picked up in FY18 with domestic demand growth the key driver
- Demand fuelled by strong growth in investment and construction, particularly in housing, transport, tourism and commercial building
- Strong population growth will support demand in future, but cycles will play out by sector and state



#### Economic Environment - New Zealand



- Economic growth moderating in New Zealand in FY18 due to weakening investment, impacting on domestic demand
- Transport investment likely to rise based on road and rail programs and projects
- Weakening population growth to impact on demand for building activity in coming years



### Total Construction – Australia





## Major Transport Projects > \$2bn, Australia





### Road Construction – Australia





## Road Construction by State – Australia





### Total Construction – New Zealand





### Civil Construction - New Zealand





### Road Construction – New Zealand







Quantitative Modelling Results for Roads Skills Adrian Hart



## Defining the Roads Sector



No single 'Roads Sector' in Census or National Accounts

Skilled labour in the roads industry comes from several sectors:

- Road and Bridge Construction
- State and Local Government
- Non-Building Construction
- Professional, Scientific and Technical Services

## Defining the Roads Workforce: FYA Clusters





## Defining the Roads Workforce



| Sector                          | Design Skills | Informer Skills | Technological<br>Skills | Artisan Skills | Total   |
|---------------------------------|---------------|-----------------|-------------------------|----------------|---------|
| Total Construction              | 28,865        | 923             | 671                     | 90,835         | 121,294 |
| Building Construction           | 15,432        | 556             | 207                     | 24,244         | 40,439  |
| Total Non-Building Construction | 5,116         | 119             | 151                     | 6,507          | 11,893  |
| Road & Bridge Construction      | 2,148         | 44              | 18                      | 3,152          | 5,362   |
| General Trade Construction      | 8,317         | 248             | 313                     | 60,084         | 68,962  |
| Public Administration & Safety  | 14,082        | 7,025           | 3,308                   | 5,350          | 29,765  |
| Federal Government              | 1,648         | 1,077           | 649                     | 24             | 3,398   |
| State Government                | 4,099         | 2,640           | 1,230                   | 286            | 8,255   |
| Local Government                | 4,830         | 2,006           | 388                     | 2,931          | 10,155  |
| Other                           | 3,505         | 1,302           | 1,041                   | 2,109          | 7,957   |
| Professional Services           | 22,860        | 10,476          | 27,224                  | 2,821          | 63,381  |
| Other Sectors                   | 46,952        | 26,193          | 32,593                  | 66,885         | 172,623 |
| Total All Sectors               | 112,732       | 44,607          | 63,857                  | 165,865        | 387,061 |
| Total Roads Workforce           | 10,540        | 3,081           | 3,945                   | 7,518          | 25,083  |
| Public Roads Workforce          | 6,928         | 1,734           | 469                     | 6,226          | 15,357  |

Source: BIS Oxford Economics, ABS Data

### Workforce Attrition



|         | Total Artisan | Total Design | Total Other |
|---------|---------------|--------------|-------------|
| Age     | Workforce     | Workforce    | Workforce   |
| Bracket | (Australia)   | (Australia)  | (Australia) |
| 15-24   | 16.7%         | 2.1%         | 1.2%        |
| 25-34   | 23.9%         | 22.4%        | 17.9%       |
| 35-44   | 24.0%         | 23.3%        | 33.2%       |
| 45-54   | 20.6%         | 25.4%        | 28.2%       |
| 55-59   | 7.4%          | 14.0%        | 10.8%       |
| 60-65   | 5.0%          | 9.2%         | 7.2%        |
| 65-69   | 1.8%          | 2.9%         | 1.1%        |
| 70+     | 0.6%          | 0.7%         | 0.3%        |
| Total   | 100%          | 100%         | 100%        |

Source: BIS Oxford Economics, ABS Data

## Workforce Gaps - Designer Cluster, Australia





### Workforce Gaps - Designer Cluster, New Zealand





### Scenarios – Australian Roads Labour Demand





## **Technology Scenarios**



#### **Constrained World**

- Higher technological disruption
- Constrained response from governments and agencies
- Increased road use and limited funding

#### Technology and Response

- Higher technological disruption
- Full policy response by governments and agencies
- More efficient use of roads and greater funding

## **Technology Scenarios**



#### **Constrained World**

- Higher construction and maintenance requirements
- Weaker productivity growth in the long term
- Increased share of designer skills at expense of other skills

#### Technology and Response

- Lower construction and maintenance requirements
- Stronger productivity growth in the long term
- Reduced share of designer skills and higher share of other skills

# Scenarios – Design Cluster, Australia





## Scenarios – Artisan Cluster, Australia





## Scenarios - Other Cluster, Australia





## Quantitative Modelling Results



### Baseline Scenario (Business as Usual)

Rising workforce gaps for all skills clusters, worsening long term (after FY22)

### Technology and Response Scenario

- Much higher workforce gap for Informers and Technologists
- Lower workforce gaps for Designers and Artisans

### **Constrained World Scenario**

- Lower workforce gap for Other skills initially, but higher longer term
- Higher workforce gaps for Designers and Artisans

## Limitations of Modelling



### Assumes 'equilibrium' in the base year (2016/17)

Evidence points to skills shortages being already apparent

### Does not adequately reflect the loss of highly skilled labour

- Workers with many years of experience will retire over the coming decade
- Assumes skills can be replaced by new graduates, migration or industry

### May not adequately reflect pull on resources from other industries

- Risks ahead from large rail investment programme
- Other sectors (e.g. mining) may also pull labour from roads industry

### GoToWebinar





Please type your questions here

Let us know the slide number your question relates to



Industry Perspectives and Challenges

Adrian Hart



## Qualitative Methodology



### Industry liaison to address limitations to quantitative approaches

• Includes other industries, education, local government, agencies

### **Industry Survey**

- Quantitative feedback on industry issues, risks and potential solutions
- Use of Likert scales to rank results

### **Deeper Dive Interviews**

- 32 interviews conducted through September November 2017
- Key themes developed
- Confidentialised responses directly included into report

## Survey Results – Level of Recruiting Difficulty



#### Design skills – University trained



#### Inform, Technological and Artisan skills



## Survey Results – Where Will Shortages Arise?



#### **Roads Agencies**



#### Other Industries



## Survey Results – Where Will Shortages Arise?



#### **Roads Agencies**



#### Other Industries





### Existing skills shortages

- 'On site' engineering and construction skills contractors & local government
- Estimators and project controls
- Pavement engineering local government
- Procurement (informed purchaser) agencies and local government
- Data management and tactical / real time network operations
- Transport economists
- Asset management



### **Future Skills Required**

- Asset management skills to provide holistic approach to custodianship
- Network operations skills both tactical and in real time
- Technological skills to develop and secure data systems
- Analytical skills to interpret large volumes of data and make decisions
- Economics skills to develop robust business cases and funding methods
- Behavioural skills to anticipate human reactions to new technologies
- 'Soft skills' to communicate ideas & solve problems in midst of disruption
- Asset management



### Impact of New Technologies

- CAV ranked biggest threat engineering, legal, commercial skills
- CAV also to change regulatory environment prescriptive vs outcomes based
- CAV impact on funding
- Transition period to CAV long period of mixed use
- Impact of C-ITS, MaaS and electric vehicles
- Moving data and services online



### Other Risks to Workforce Capability Identified

- Inability to attract skills due to pay or regional differences
- Demographic and cultural challenges
- Insufficient or mismatched skills from the education sector
- Institutional roadblocks
- Need to develop partnering culture



Report Recommendations

Adrian Hart



## Potential Timing of Capability Threats



| 0-5 years (to 2022)                | 5-10 years (to 2027)             | 10-20 years (to 2037)                 |
|------------------------------------|----------------------------------|---------------------------------------|
| Demand / supply pressures          |                                  |                                       |
| Rising level of roads activity     | Sustained high roads activity    | Rising maintenance tasks              |
| Competing industry demands         | Competing industry demands       | Unknown                               |
| Rapidly ageing workforce           | Rapidly ageing workforce         | Ageing workforce                      |
| Falling rates of migration         | Stabilising rates of migration   | Unknown                               |
| Falling STEM study in schools      | Unknown                          | Unknown                               |
|                                    |                                  |                                       |
| Vehicle technologies (C.A.S.E.)    |                                  |                                       |
| ITS only                           | Emerging C-ITS                   | C-ITS                                 |
| Mostly semi-autonomous vehicles    | Emerging Level 4 and 5 CAV       | Increasing share of Level 4 and 5 CAV |
| Ride sharing services (e.g. Uber)  | Emerging MaaS systems            | Advanced MaaS systems                 |
| Mostly non-electric vehicles (EVs) | Increasing share of EVs          | Majority of new vehicles sold are EVs |
|                                    |                                  |                                       |
| Other technologies                 |                                  |                                       |
| Big data and BIM                   | Big data and BIM / systems       | Machine learning and AI               |
|                                    |                                  |                                       |
| Agency role and function           |                                  |                                       |
| Roads and Transport                | Increasing Transport integration | Transport and Liveable Cities         |
| Highly prescriptive regulation     | Increasing outcomes approaches   | Non-prescriptive regulation           |
| Engineering & network operations   | Increasing ops & asset mgment    | Optimising transport networks and use |
| Funding / road user charging       |                                  |                                       |
|                                    | Introducing hoovy vohicle PLIC   | Introducing broad based BLIC          |
| Licencing and fuel taxes           | Introducing heavy vehicle RUC    | Introducing broad-based RUC           |

## Challenges and Potential Solutions



### Meeting 'traditional' skills challenges

- Maximising industry skills base pipelines, procurement, education & training
- Using procurement as a skills strategy
- Targeting skills in regional areas pooling, cadetships, network opportunities
- Strengthening workforce retention at all life cycle stages

## Challenges and Potential Solutions



### Meeting 'non-traditional' skills challenges

- Stronger engagement with the education sector
- Partnering with industry

"the answer may be... to identify ways we can bring in others to solve problems.

We can be a good broker, rather than trying to do it all."

### GoToWebinar





Please type your questions here

Let us know the slide number your question relates to

### Questions?



#### **Adrian Hart**

Associate Director, Building and Construction BIS Oxford Economics

P: +61 2 8458 4233

E: ahart@bisoxfordeconomics.com.au

### Rachael Logie

Associate Director, Construction Consulting BIS Oxford Economics

P: +61 2 8458 4251

E: rlogie@bisoxfordeconomics.com.au



## **Upcoming Austroads webinars**



| Topic                                                                 | Date         |
|-----------------------------------------------------------------------|--------------|
| Minimum Levels of Componentisation for Road Infrastructure Assets     | 11 September |
| Guide to Project Delivery Part 5: Road Construction Quality Assurance | 20 September |
| Operations of Automated Heavy Vehicles in Remote and Regional Areas   | 25 September |

Register at <a href="https://austroads.com.au/webinars-and-events">https://austroads.com.au/webinars-and-events</a>







www.wrcsydney2023.com.au

# Thank you for participating