

Pavement Design Guide to Pavement Technology Parts 2 and 4C 9 March 2018

Today's moderator

Eliz Esteban

Communications Officer Austroads

P: +61 2 8265 3302

E: <u>eesteban@austroads.com.au</u>

About Austroads

The peak organisation of Australasian road transport and traffic agencies

- Roads and Maritime Services New South Wales
- Roads Corporation Victoria
- Department of Transport and Main Roads Queensland
- Main Roads Western Australia
- Department of Planning, Transport and Infrastructure South Australia
- Department of State Growth Tasmania
- Department of Transport Northern Territory
- Transport Canberra and City Services Directorate, Australian Capital Territory
- Commonwealth Department of Infrastructure, Regional Development and Cities
- Australian Local Government Association
- New Zealand Transport Agency

Our structure

Austroads Board						
		Austroads National Office				
Assets Program	Network Program	Safety Program	Connected and Automated Vehicles	NEVDIS		
Assets Task Force	Network Task Force	Road Safety Task Force	CAV Steering Committee	Vehicle governance		
Bridge Task Force	Freight Task Force	Road Design Task Force	Industry Reference Group	Licensing governance		
Pavements Task Force		Registration and Licensing Task Force				
Road Tunnels Task Force		Austroads Safety Barrier Assessment Panel				
Project Delivery Task Force		, and				

Housekeeping

Pre Qu

Presentation = 40 minsQuestion time = 10 mins

www.austroads.com.au/webinars

GoToWebinar

 File View Help 🌐 🛨	_□¹×
► Audio	 [1]
▼ Questions	ប
[Enter a question for staff]	
	Send
 Tart	
fest fest	
Webinar ID:	
GOIOVVEDITAI	

Please type your questions here

Let us know the slide number your question relates to

Austroads Guides

Download from Austroads Website:

- <u>https://www.onlinepublications.austroads.com.au/items/AGPT02-17</u>
- https://www.onlinepublications.austroads.com.au/items/AGPT04C-17

8

Today's presenter

Dr Michael Moffatt

National Technical Leader Pavements and Surfacings ARRB

P: +61 3 9881 1650

E: michael.moffatt@arrb.com.au

Agenda

Торіс	Presenter
Project Background and Introduction	
 Guide to Pavement Technology Part 2: Pavement Structural Design Lime Stabilised Subgrades Cemented Materials Lean-mix Concrete Asphalt Characterisation Design Traffic Axle Strain Method (ME bound materials) 	Dr Michael Moffatt
Guide to Pavement Technology Part 4C: Materials for Concrete Road Pavements	
Q&A	

Project Background and Introduction

Evolution of Guide to Pavement Technology Part 2

12

2017 Edition

GUIE T PWEMEN THICKNES DESIG

2017

Part 2: Pavement Structural Design

2002 – 2018 Reports

Introduction to Team

Project Team

Austroads Project Manager Andrew Papacostas VicRoads

Project Leader Michael Moffatt ARRB

Team Member Geoff Jameson ARRB

Review Team

Austroads Pavements Task Force

Stakeholders -Road & Traffic Authorities & Industry

Austroads Board

Guide to Pavement Technology Part 2 Pavement Structural Design

Overview of Part 2 changes

Flexible pavements

- Lime stabilised subgrades
- Cemented materials
- Lean-mix concrete
- Asphalt
- Design traffic
- Removal of Standard Axle Repetitions (SARs)
- Axle-strain method

Rigid pavements

• Joint detailing diagrams

Lime Stabilised Subgrades

Lime Stabilised Subgrades

2012

 Lime stabilised subgrades not

structural

AP-R435-13

2013

- Researched methods
- Lime stabilised subgrades
 - = selected subgrades
 - ≠ subbase layers
- ME procedure
- Empirical procedure

Adoption in 2017

Only applicable if:

- Lime provides long term strength
- Lime content meets lime demand test (lime content when pH = 12.4)
- Minimum CBR of 60%

Allows maximum E = 150 MPa

Lime stabilised subgrade considered in same way as selected materials

Cemented Materials

- In situ flexural modulus
 - after 28 days curing in roadbed
- Estimated
 - Unconfined Compressive Strength (UCS) tests
 - Presumptive values

- In situ flexural modulus
 - after 90 days curing in roadbed
- Measured
 - -4-point flexural beam
 - Lab-field adjustment factor
- Estimated
 - Unconfined Compressive Strength (UCS) tests
 - Presumptive values

- Applied tensile strain
- Modulus
- Project reliability

$$N = RF \left[\frac{\frac{113000}{E^{0.804}} + 191}{\varepsilon} \right]^{12}$$

4-point Beam Testing: Modulus

4-point Beam Testing: Modulus + Strength

3 methods
$$\sqrt{}$$
 Same as 2012
 $N = RF\left(\frac{K}{\varepsilon}\right)^{12}$

- 1. Fatigue measurements (inc. lab-field factor)
- 2. Estimated from measurements of flexural strength & modulus (inc. lab-field factor)
- 3. Presumptive values (No RF)

Lean-mix Concrete

Cemented materials

Cemented materials type included lean-mix concrete

$$N = RF \left[\frac{\frac{113000}{E^{0.804}} + 191}{\varepsilon} \right]^{12}$$

2017 Cemented materials

- Lean-mix concrete a separate material type
- Presumptive values

Asphalt Characterisation

Estimate of the value obtained from either:

- Resilient modulus measured using the standard indirect tensile test (ITT) adjusted to in-service temperature and rate of loading
- Estimation from bitumen properties using Shell nomographs and in-service temperature and rate of loading

Guide to Pavement Technology Part 2 Pavement Structural Design Austroad

- Retains both methods
- Clarifies that both yield a flexural modulus (built into rate of loading adjustment)
- Adds direct measurement of flexural modulus

- Flexural modulus measurement at inservice speed and temperature (WMAPT)
- Interpolation from measured flexural modulus over a wide range of speed and temperatures
- 3. Measure ITT as in 2012 Guide
- Estimation from Shell nomographs as in 2012 Guide

$$N = \frac{SF}{RF} \left[\frac{6918(0.856V_b + 1.08)}{E^{0.36}\varepsilon} \right]^5$$

Presumptive SF = 6

Desired project reliability					
50%	80%	85%	90%	95%	97.5%
1.0	2.4	3.0	3.9	6.0	9.0

- Guidance on using laboratory measured fatigue performance in design
- Requires understanding relationship between lab and field performance

WMAPT (°C)	≤ 25	26 - 34	≥ 35
Design traffic limit (ESA)	4 x 10 ⁸	2 x 10 ⁸	10 ⁸

GoToWebinar

 File View Help 🌐 🛨	_□¹×
► Audio	 [1]
▼ Questions	ប
[Enter a question for staff]	
	Send
 Tart	
fest fest	
Webinar ID:	
GOIOVVEDITAI	

Please type your questions here

Let us know the slide number your question relates to

Design Traffic

2017 Capacity Check

Guide to Pavement Technology Part 2 Pavement Structural Design Austroad

Check that:

Annual number of Heavy Vehicles ≤ lane capacity

Simple approach adopted:

Capacity is when flows mean that road is saturated 24 h/day

Axle Strain Method Mechanistic Empirical (ME) Bound Materials

2012 Axle Strain Method (ME Bound Materials)

- Calculate strain only under a 80 kN Standard Axle load
- Calculate allowable traffic loading under 80 kN Standard Axle load
- Design traffic needed to be expressed in terms of repetitions of a Standard Axle
- Cumulative traffic over design period includes various axle group types and loads

2012 Axle Strain Method (ME Bound Materials)

- From strains calculate the <u>allowable loading</u> in terms Standard Axle Repetitions
- Hence, express the <u>design traffic</u> in Standard Axles Repetitions of damage

Axle	Proportion of load levels by axle group type [%]					
group load	Single	Single	Tandem	Tandem	Triaxle	Quad-axle
[kN]	single-tyres	dual-tyres	single-tyres	dual-tyres	dual-tyres	dual-tyres
10	0.0101	1.0001		0.0900		
20	1.2666	1.5502		0.2100	0.0200	
30	12.5342	13.5614		0.4600	0.0300	
40	13.9123	14.6415	0.0414	1.7100	0.1100	
50	13.8717	14.8615	0.1448	2.5000	0.6000	
60	18.4011	13.5814	1.5517	4.1100	2.0900	0.5539
70	20.6708	10.5511	5.6481	5.7500	3.6800	0.5539
80	14.8445	9.1009	9.0824	7.0100	5.2800	0.3728
90	4.4888	7.1007	8.7825	6.8800	5.6500	2.2262
100		5.3405	10.6031	6.2500	5.2800	5.9438
110		3.7704	13.1271	5.6300	4.8400	9.8530
120		2.3202	13.5306	4.7000	4.3200	18.4065
130		1.4901	14.1202	4.7600	4.3300	12.6438
140		0.7801	10.9341	4.7000	3.8800	5.3899
150		0.3500	6.6205	4.9700	3.8900	2.7908
160			3.7550	5.5600	4.1600	2.5991
170			2.0585	5.4800	3.9000	2.0452
180				5.7200	4.3000	0.7456
190				5.1800	4.3000	1.6723
200				4.8500	4.6000	1.2995
210				4.4200	5.2400	0.5539
220				3.2700	5.1800	1.1184
				A 4544	F 7000	1 2005

equivalent Standard Axle Repetitions

2012 Axle Strain Method (ME Bound Materials)

Axle type	Standard group load [kN]
single axle – single tyres	53
single axle – dual tyres	80
tandem – dual tyres	135
triaxle – dual tyres	181
quad-axle – dual tyres	221

Distress type	LDE
asphalt fatigue	5
cemented material /LMC fatigue	12
rutting and shape loss	7

Shortcomings of 2012 Method

- Standard loads used to determine SAR independent based on equal deflection
- Standard loads assumed equal maximum deflection equals equal damage
 - Regardless of number of occurrences of that deflection (i.e. Axles with group)
- Design method equates damage to strains not deflections
- Standard loads independent of structure
 - Strains vary with pavement structure

2017 Method

- Design traffic expressed as the expected number of repetition for each axle load on each axle group type
- Allowable loading in terms of fatigue damage - calculated for each axle load on each axle group type
- Fatigue damage calculated by dividing the expected repetitions by the allowable repetitions

Axle group load (kN)	Expected group repetitions	Axles in group	Critical strain (microstrain)	Allowable group repetitions	Damage
10	66 334	1	21.9	2.06E+11	1.14E-09
20	166 0 94	1	43.8	6.42E+09	1.45E-07
30	448 086	1	65.6	8.46E+08	1.19E-06
40	418 863	1	87.5	2.01E+08	1.59E-05
50	320 880	1	109.4	6.58E+07	1.60E-04
60	183 475	1	131.3	2.64E+07	5.82E-04
70	124 150	1	153.1	1.22E+07	1.45E-03
80	88 299	1	175.0	6.27E+06	2.52E-03
90	56 708	1	196.9	3.48E+06	3.54E-03
100	26 606	1	218.8	2.06E+06	5.70E-03
110	7 827	1	240.6	1.28E+06	7.95E-03
120	2 212	1	262.5	8.26E+05	1.17E-02
130	466	1	284.4	5.54E+05	1.72E-02
				Total SADT damage	0.271

Table L 11: Calculation of asphalt damage - single axle/dual tyres (SADT) - full depth asphalt pavement

2017 Method

• Consistent with method used for concrete pavements

SINGLE AXLES / SINGLE WHEELS (SAST)						
			Equivalent Stress	0.726		
			Stress Ratio Factor	0.171	Erosion Factor	1.837
			Fatigue Ana	lysis	Erosion An	alysis
Axle Load (kN)	Design Load (kN)	Expected Repetitions	Allowable Repetitions	Fatigue (%)	Allowable Repetitions	Damage (%)
130	169.0	2,361	5,668	41.66	197,614	1.19
120	156.0	4,990	21,487	23.23	331,752	1.50
110	143.0	7,673	81,994	9.36	605,940	1.27
100	130.0	9,069	371,291	2.44	1,261,027	0.72
90	117.0	20,606	6,279,485	0.33	3,320,332	0.62
80	104.0	92,189	UNLIMITED	0.00	15,721,676	0.59
70	91.0	1,018,852	UNLIMITED	0.00	UNLIMITED	0.00

2017 Calculation of Allowable Repetitions to Fatigue

- Simplifications
 - Assume axles act in isolation to each other
 - Assume strains linearly proportional to load
- Requires two response-to-load calculations

53 kN single axle/single tyres

2017 Calculation of Allowable Repetitions to Fatigue

For each axle group type and load level

- Predict strain under each isolated axle
- Use fatigue relationship to predict the allowable repetitions considering number of axles in the group

$$N_{ij} = \frac{1}{n} \times \frac{SF}{RF} \left[\frac{6918(0.856V_b + 1.08)}{E^{0.36} \mu \varepsilon_{ij}} \right]^5$$

Axle group load (kN)	Expected group repetitions	Axles in group	Critical strain (microstrain)	Allowable group repetitions
10	3 740	2	10.9	3.29E+12
20	14 905	2	21.9	1.03E+11
30	16 167	2	32.8	1.35E+10
40	51 204	2	43.8	3.21E+09
50	168 246	2	54.7	1.05E+09
60	246 335	2	65.6	4.23E+08
70	283 346	2	76.6	1.96E+08
80	253 017	2	87.5	1.00E+08
90	197 125	2	98.4	5.57E+07
100	187 568	2	109.4	3.29E+07
110	162 315	2	120.3	2.04E+07
120	154 157	2	131.3	1.32E+07
130	152 240	2	142.2	8.86E+06

Concept of Standard Axle Repititions (SARs) Removed

Empirical design chart

- Permanent deformation

Mechanistic-empirical method

- Asphalt
- Cemented materials
- Lean-mix concrete
- Permanent deformation

ESA (as per 2012)

HVAGs & traffic load distribution HVAGs & traffic load distribution HVAGs & traffic load distribution ESA

$$N_{Standard Axle} = \left(\frac{9300}{\mu\varepsilon}\right)^7 \longrightarrow N_{ESA} = \left(\frac{9150}{\mu\varepsilon}\right)^7$$

Austroads

Example of Asphalt Thickness Changes

54

Including lean-mix concrete

- Similar to asphalt, the use of the axle-strain method would have resulted in a general decrease in cemented materials thicknesses
- The thickness decrease varies with the traffic load distribution, being greater for distribution in which tandem axles and triaxles caused greater fatigue damage
- Experienced road agency practitioners advised:
 - they agreed the axle-strain method provided an improved method of assessing fatigue damage
 - but there was no evidence in support of a general reduction in cemented materials thickness

Overview of Part 2 changes

Flexible pavements

- Lime stabilised subgrades
- Cemented materials
- Lean-mix concrete
- Asphalt
- Design traffic
- Removal of Standard Axle Repetitions (SARs)
- Axle-strain method

Rigid pavements

• Joint detailing diagrams

Guide to Pavement Technology Part 4C Materials for Concrete Road Pavements

Introduction to team

Project Team

Austroads Project Manager Andrew Papacostas VicRoads

Project Leader Michael Moffatt ARRB

Team Member George Vorobieff Head to Head International

Review Team

Austroads Pavements Task Force

Stakeholders -Road & Traffic Authorities & Industry

Austroads Board

Key changes

- Diagrams updated and made consistent with Roads and Maritime Services (RMS) practice
- Reference made to geopolymer cements
- References updated
- Minor editorial changes

Questions?

Dr Michael Moffatt

National Technical Leader Pavements and Surfacings ARRB

P: +61 3 9881 1650

E: michael.moffatt@arrb.com.au

Upcoming Austroads webinar

Торіс	Date
Local Road Access for High Productivity Freight Vehicles	27 March
Geopolymer Concrete and its Applications	1 May

Register at http://www.austroads.com.au/event

Thank you for participating