

13 February 2018

Today's moderator

Eliz Esteban

Communications Officer Austroads

P: +61 2 8265 3302

E: eesteban@austroads.com.au

About Austroads

The peak organisation of Australasian road transport and traffic agencies

- Roads and Maritime Services New South Wales
- Roads Corporation Victoria
- Department of Transport and Main Roads Queensland
- Main Roads Western Australia
- Department of Planning, Transport and Infrastructure South Australia
- Department of State Growth Tasmania
- Department of Transport Northern Territory
- Transport Canberra and City Services Directorate, Australian Capital Territory
- The Department of Infrastructure, Regional Development and Cities
- Australian Local Government Association
- New Zealand Transport Agency

Our structure

Housekeeping

Presentation = 35 mins

Question time = 15 mins

www.austroads.com.au/webinars

GoToWebinar

Please type your questions here

Let us know the slide number your question relates to

Austroads report

Download from Austroads Website:

https://www.onlinepublications.austroads.com.au/ items/AP-R558-18

Today's presenter

Dr Ian Espada

Team Leader, Network Operations
Congestion, Freight and Productivity
Australian Road Research Board (ARRB)

P: +61 3 9881 1685

E: ian.espada@arrb.com.au

Agenda

Topic	Presenter
Project Background and Introduction	
Literature Review	
Stakeholder Consultation	Dr Ian Espada
Modelling	
Conclusions	
Q&A	

Introduction to team

Project Team

Austroads
Project Manager
Thang Nguyen

Project Leader, ARRB lan Espada

Team Member, ARRB Kevin Wu

Team Member, ARRB Andrej Bucko

Review Team

Austroads Project Working Group

Stakeholders-Road and Traffic Authorities

Austroads Freight Task Force

Austroads Board

The Project Team

High productivity freight vehicle (HPFV) access in metropolitan areas

Performance Based Standard (PBS) 2B access → road operation

Project overview

Impact	Findings
Congestion delay	Significant change in truck fleet mix
	Reduction in truck trips
	 Congestion delay in saturated networks
Vehicle-to-vehicle	 HPFV have lower historical crash rates
crashes	HPFV appear safer or just as safe
Crashes with	 Trucks are overrepresented
vulnerable road	 No specific analysis on different truck types
users	• Factors related to crash heightened with larger trucks

Environmental, amenity and cost

Impact	Findings
Environment	Reduction in emissions
Amenity	 Reduction in trucks could improve amenity
	 Impact of different truck types is not well understood
Transport cost	Significant savings

- Safety, amenity and community acceptance
- Congestion delay is a risk
 - but not considered critical
- Transport cost savings is primary driver
- Cost of infrastructure upgrade and maintenance
- Highly desirable to convert to PBS 2B
 - Line haul/truck routes with no constraints:>50% take-up rate
 - Otherwise: 15% to 50%

GoToWebinar

Please type your questions here

Let us know the slide number your question relates to

Modelling Framework

Parameters

Car to PBS 2B vehicles

Vehicle dimensions

Acceleration and deceleration

- Load conditions
- Driving mode
- Grade

Vehicle power-to-weight ratio

PBS 2B Parameters

- Powertrain specs (past assessments)
- Mass
- Driving mode
- Grade

DriveSIM

AccelerationSpeed limitations

King Georges Road

Item	Actual	Hypothetical
Demand	Peak (2016 to 2036) Off-peak (2016)	Peak and off-peak (2016)
Mix	<1% Articulated trucks	<1% to 8% Articulated trucks
Network	As existing	As existing

King Georges Road

✓ Lower freight transport cost in both cases

King Georges Road

Access type	Vehicle type	Change in transport cost	
Access type		<1% Articulated	8% Articulated
Off-peak only	All types	No change	No change
	Articulated	Benefit	Benefit
All-day	All types	No change	Dis-benefit
	Articulated	Benefit	Benefit

Motorway

Item	Values
Demand	Off-peak → Peak
Mix	3% → 16% articulated
Network	On-ramp

Motorway

- ✓ Neutral impact to delay
- ✓ Lower operation and emission cost

- √ Higher delays
- √ Lower operation cost

Accoss type	Vehicle type	Change in transport cost	
Access type	vernicle type	<1% Articulated	8% Articulated
Off-peak only	All types	Benefit	Benefit
	Articulated	Benefit	Benefit
All-day	All types	Benefit	Benefit
	Articulated	Benefit	Benefit

Issue	Findings
Congestion delay	Risk if high truck shares and saturated in arterials
	Not a concern on motorways, low truck shares, and under-saturated roads
Vehicle-to-vehicle crashes	Likely to be neutral or could potentially result in less crashes
Crashes with vulnerable road users	Risk apply countermeasures
Environmental	Benefits expected

Issue	Findings
Amenity	Possible benefits, but not well-understood
Modelling framework	Key assumptions were developed for accurate and consistent analysis
King Georges Road access	Recommend to apply based on network performance impacts
Arterial road access	All-day access can be considered when under-saturated or low truck share
	Off-peak access only can be considered, otherwise
Motorway access	All-day can be generally considered

Questions?

Dr Ian Espada

Team Leader, Network Operations
Congestion, Freight and Productivity
Australian Road Research Board (ARRB)

P: +61 3 9881 1685

E: ian.espada@arrb.com.au

Upcoming Austroads webinars

Topic	Date
National Performance-based Asphalt Specification Framework	27 February
Pavement Design: Guide to Pavement Technology Parts 2 and 4C	9 March
Local Road Access for High Productivity Freight Vehicles	27 March

Register at http://www.austroads.com.au/event

Thank you for participating